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LAS BIODEGRADATION AND REMOVAL IN SEWAGE TREATMENT 

 

 

Many studies have been conducted in the U.S. and Europe in recent years on linear alkylbenzene 

sulfonate (LAS) in sewage treatment.  These studies demonstrate that LAS is rapidly biodegraded 

and extensively removed during biological treatment in municipal wastewater treatment plants 

and in household septic systems. 

 

Municipal Wastewater Treatment Plants 

 

 Biodegradation of LAS begins in raw sewage before reaching the wastewater treatment 

plant.(1)

 

 In the US, monitoring in 50 wastewater treatment facilities in 11 states showed average 

LAS levels in raw sewage ranged from 4.2 to 5.7 mg/L(2) while levels in raw sewage from 

five European countries ranged from 4.0-15.1 mg/L.(3,4) 

 

       Testing of incoming water (influent), outgoing water (effluent) and solids (sludge) show 

extensive removal of LAS from wastewater.  Indeed, LAS was more efficiently removed 

than were other biodegradable materials, measured as the biochemical oxygen demand, or 

BOD.(2,3) 

 

 Most U.S. STPs are activated sludge units, which typically remove more than 99 percent 

of the LAS present in sewage.  Other systems, such as rotating biological contactors 

(RBCs) and oxidation ditches, have LAS removal rates ranging from 96 to 99 percent.  

Less efficient and less widely used trickling filter systems remove 77-83 percent when 

used alone, but reach more effective removal levels when coupled with methods such as 

sand filtration.(2,5) 

 

 Comparison of the performance of activated sludge treatment plants with those from an 

earlier (1973 through 1986) U.S. monitoring study(6) shows that LAS removal during 

sewage treatment has improved over the years, probably due to more efficient treatment 

plant operation. 

 

 Monitoring data from five European countries showed LAS removal in activated sludge 

treatment ranged from 98.5-99.9%(1,3,4,7) and to range from 89.1-99.1 percent removal in 

trickling filter plants.(7) 
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 Most of the LAS removal is due to rapid and complete biodegradation during sewage 

treatment, with only about 20% of LAS removal in the sludge.(3,8) 

 

 Consequently, LAS concentrations in water and sediments of rivers and streams receiving 

treated wastewater are very low and pose no risk to the environment.  The remaining LAS 

will continue to rapidly biodegrade (See "LAS Biodegradation and Safety in Rivers and 

Streams" and "LAS Biodegradation and Safety in Sediments"). 

 

 Sludge from sewage treatment is incinerated, put in landfills or applied to land as a soil 

conditioner or fertilizer.  LAS levels in sludge applied to soil (sludge amended soil) are 

very low and pose no risk to the environment.  Remaining LAS continues to rapidly 

biodegrade (See "LAS Biodegradation and Safety in Sludges and Soils"). 

 

 

Household Septic Systems 

 

       In the U.S., 75% of sewage is treated in municipal treatment plants while 25% is treated 

in household septic systems, mostly in suburban and rural areas.(9)

 

 LAS biodegrades rapidly in the soil under the percolation field of a household septic 

system. Consequently, LAS is efficiently removed in septic systems and poses no risk to 

groundwater resources.(10,11)
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