SIDS DOSSIER

LINEAR ALKYLBENZENE SULFONATE (LAS)

CAS NOs. 1322-98-1 25155-30-0 26248-24-8 27636-75-5 68081-81-2 68411-30-3 69669-44-9 85117-50-6 90194-45-9 127184-52-5

Sponsor Country : United States of America Date: August 15, 2005

TABLE OF CONTENTS

		Page
1.	GENERAL INFORMATION	1
1.01	SUBSTANCE INFORMATION	1
1.02	OECD INFORMATION	3
1.03	CATEGORY JUSTIFICATION	4
1.1	GENERAL SUBSTANCE INFORMATION	4
1.2	SYNONYMS	4
1.3	IMPURITIES	5
1.4	ADDITIVES	5
1.5	QUANTITY	5
1.6	LABELLING AND CLASSIFICATION (USE AND/OR TRANSPORTATION)	6
1.7	USE PATTERN	6
1.8	OCCUPATIONAL EXPOSURE LIMIT VALUE	8
1.9	SOURCES OF EXPOSURE	8
1.10	ADDITIONAL REMARKS	9
2	PHYSICAL-CHEMICAL DATA	11
2.1	MELTING POINT	11
2.2	BOILING POINT	12
23	DENSITY (RELATIVE DENSITY)	13
2.4	VAPOR PRESSURE	14
2.5	PARTITION COEFFICIENT n-OCTANOL/WATER	
2.6	WATER SOLUBILITY	
2.7	FLASH POINT (LIOUIDS)	
2.8	AUTO FLAMMABILITY (SOLID/GASES)	
2.9	FLAMMABILITY	
2.10	EXPLOSIVE PROPERTIES	
2.11	OXIDISING PROPERTIES	
2.12	OXIDATION: REDUCTION POTENTIAL	
2.13	ADDITIONAL DATA	21
3.	ENVIRONMENTAL FATE AND PATHWAYS	
3.1	STABILITY	
3.1.1	PHOTODEGRADATION	
3.1.2	STABILITY IN WATER	
3.1.3	STABILITY IN SOIL	
3.2	MONITORING DATA (ENVIRONMENTAL)	
3.3	TRANSPORT AND DISTRIBUTION BETWEEN ENVIRONMENTAL COMPARTM	MENTS
	INCLUDING ESTIMATED ENVIRONMENTAL CONCENTRATIONS AND	
	DISTRIBUTION PATHWAYS	
3.3.1	TRANSPORT	
3.3.2	THEORETICAL DISTRIBUTION (FUGACITY CALCULATION)	
3.4	MODE OF DEGRADATION IN ACTUAL USE	51
3.5	BIODEGRADATION	
3.6	BOD-5, COD OR RATIO BOD-5/COD	67
3.7	BIOACCUMULATION	
3.8	ADDITIONAL REMARKS	
4.	ECOTOXICITY	

4.1	ACUTE/PROLONGED TOXICITY TO FISH	74
4.2	ACUTE TOXICITY TO AQUATIC INVERTEBRATES	
4.3	TOXICITY TO AQUATIC PLANTS e.g., ALGAE	
4.4	TOXICITY TO BACTERIA	
4.5	CHRONIC TOXICITY TO AQUATIC ORGANISMS	103
4.5.1	CHRONIC TOXICITY TO FISH	103
4.5.2	CHRONIC TOXICITY TO AQUATIC INVERTEBRATES	111
	(e.g., DAPHNIA REPRODUCTION)	
4.6	TOXICITY TO TERRESTRIAL ORGANISMS	127
4.6.1	TOXICITY TO SOIL DWELLING ORGANISMS	127
4.6.2	TOXICITY TO TERRESTRIAL PLANTS	134
4.6.3	TOXICITY TO OTHER NON-MAMMALIAN TERRESTRIAL SPECIES	140
	(INCLUDING AVIAN)	
4.7	BIOLOGICAL EFFECTS MONITORING (INCLUDING BIOMAGNIFICATION)	140
4.8	BIOTRANSFORMATION AND KINETICS	153
4.9	ADDITIONAL REMARKS	156
5.	TOXICITY	
5.1	ACUTE TOXICITY	160
5.1.1	ACUTE ORAL TOXICITY	160
5.1.2	ACUTE INHALATION TOXICITY	164
5.1.3	ACUTE DERMAL TOXICITY	165
5.1.4	ACUTE TOXICITY, OTHER ROUTES OF ADMINISTRATION	167
5.2	CORROSIVENESS/IRRITATION	169
5.2.1	SKIN IRRITATION/CORROSION	169
5.2.2	EYE IRRITATION/CORROSION	174
5.3	SKIN SENSITIZATION	179
5.4	REPEATED DOSE TOXICITY	180
5.5	GENETIC TOXICITY IN VITRO	191
5.6	GENETIC TOXICITY IN VIVO	194
5.7	CARCINOGENICITY	197
5.8	TOXICITY TO REPRODUCTION	200
5.9	DEVELOPMENTAL TOXICITY / TERATOGENICITY	202
5.10	OTHER RELEVANT INFORMATION	
5.11	EXPERIENCE WITH HUMAN EXPOSURE	221
REFE	RENCES	225
APPE	NDIX A - BIBLIOGRAPHY	244

1. <u>GENERAL INFORMATION</u>

1.01 SUBSTANCE INFORMATION

A. CAS number The information provided in this dossier refers to various individual compounds and mixtures of sulfonated linear alkyl benzenes which are identified by the following CAS numbers and names:

CAS No.	EINECS No.	Name
1322-98-1	215-347-5	Decylbenzene sulfonic acid, sodium salt
25155-30-0	246-680-4	Dodecylbenzene sulfonic acid, sodium salt
26248-24-8	247-536-3	Tridecylbenzene sulfonic acid, sodium salt
27636-75-5	248-583-2	Undecylbenzene sulfonic acid, sodium salt
68081-81-2	268-356-1	C ₁₀₋₁₆ Monoalkylbenzene sulfonic acid, sodium salt
68411-30-3	270-115-0	C ₁₀₋₁₃ Alkylbenzene sulfonic acid, sodium salt
69669-44-9	274-070-8	C ₁₀₋₁₄ Alkyl derivatives benzene sulfonic acid, sodium salt
85117-50-6	285-600-2	C ₁₀₋₁₄ Monoalkylbenzene sulfonic acid, sodium salt
90194-45-9	290-656-6	C ₁₀₋₁₃ Alkyl derivatives benzene sulfonic acid, sodium salt
127184-52-5		4-C ₁₀₋₁₃ -sec Alkyl derivatives benzene sulfonic acid, sodium salt

B. Name (*IUPAC name*) See A.

C. Name (OECD name) Linear alkylbenzene sulfonate (LAS)

D. CAS Descriptor

Relatively consistent mixture of homologues with predominately linear (currently >95% for most products) varying alkyl chain lengths (from C_{10} to C_{14}) and phenyl isomers with attachment of the *para* sulfonate (sodium salt) benzene ring to the alkyl chain at non-terminal positions. This description applies to all of the CAS numbers listed in 1.01A as shown by the alkyl chain distribution in the table in 1.01G.

- E. EINECS-Number See A.
- F. Molecular Formula See G.

G. Structural Formula

Region	<c<sub>10</c<sub>	C ₁₀	C ₁₁	C ₁₂	C ₁₃	C ₁₄	>C ₁₄	Range of Averages	Weighted Average*
Canada 68081-81-2	≤1	<16	19-39	20-50	5-27	<3	<1	11.8	11.8
Europe 25155-30-0 68081-81-2 68411-30-3 85117-50-6 90194-45-9 127184-52-5	≤1	8-20	19-39	20-50	5-27	<1-3	<1	11.6-11.8	11.7
Japan 68081-81-2 68411-30-3 69669-44-9	≤1	7-16	19-39	20-50	5-27	<1-3	<1	11.7-11.8	11.8
United States 1322-98-1** 25155-30-0 26248-24-8** 27636-75-5** 68081-81-2 69669-44-9 85117-50-6 90194-45-9	<2	1-25	7-50	20-50	5-45	<1-10	<1	11.3-12.6	11.7

The linear alkyl carbon chain typically has 10 to 14 carbon units, with the approximate mole ratio varying somewhat regionally, as shown in the following table:

*Weighted by production volume for each region.

**Manufacture of LAS under these CAS numbers has recently been discontinued.

The molecular weights depend on alkyl chain length and range from 338 ($C_{11,3}$) to 356 ($C_{12,6}$). As shown in the table, all the LAS category members (CAS numbers) have the alkyl chain distributions for the LAS category. All of the data in this assessment, except for homologue data identified as such, is on LAS category materials having the alkyl chain distribution shown in the table. The available information on the test substances is provided in the robust summary for each test. All results have been corrected for 100% activity.

Commercial LAS is exclusively manufactured as mixtures of C₁₀ to C₁₃ or C₁₄ alkyl chain homologues, having average alkyl chain lengths ranging from C_{11.3} to C_{12.6}, with the predominant materials having average alkyl chain lengths ranging from C_{11.7} to C_{11.8} (Table above). Each alkyl chain homologue consists of a mixture of all the possible sulfophenyl isomers except for the 1-phenyl isomer which is not found in the commercial material. The catalyst used to make the LAB determines the distribution of the phenyl isomers in commercial LAS with the proportion of the 2-phenyl isomers ranging from 18 to 28% (Valtorta et al., 2000). Consequently, commercial LAS consists of a mixture of 20 or more compounds, the 2-phenyl to 5-phenyl isomers of the C₁₀ homologue, the 2-phenyl to 6-phenyl isomers of the C₁₁ and C_{12} homologues and the 2-phenyl to 7 phenyl isomers of the C_{13} homologue, etc.

H.	Substance Group	Not applicable
I.	Substance Remark	Not applicable
J.	Molecular Weight	Range depending on alkyl chain length
Augus	t 11, 2005	2

1.02 OECD INFORMATION

A. Sponsor Country: United States of America

B. Lead Organization:

Name of Lead Organization: United States Environmental Protection Agency Contact person: Mr. Oscar Hernandez Address:

1200 Pennsylvania Avenue, N.W. Washington, D.C. 20460 USA Tel: (202) 564-7641 Email: hernandez.oscar@epa.gov

C. Name of responder

Name: John Heinze Ph.D., Consortium Manager Address:

Industry Coalition for the SIDS Assessment of LAS c/o Council for LAB/LAS Environmental Research 529 14th Street, N.W., Suite 807 Washington, D.C. 20045 USA Tel: (202) 737-0171 Fax: (202) 737-8406

Consortium Participants

Center for LAB Environmental and Technical Studies for Asia (CLETSA)
Cognis Deutschland GmbH&Co.KG
Colgate-Palmolive Company
Huntsman Corporation
Kao Corporation
Lion Corporation
Petresa International N.V.
Quimica Venoco, CA
YPF SA
Sasol North America
Stepan Company
TAYCA Corporation
The Dial Corporation
The Procter & Gamble Company
Unilever Household and Personal Care North America

Additional Participants

Mitsubishi Chemical Corporation Nippon Petrochemicals Co., Ltd. W.R. Grace & Company

1.03 CATEGORY JUSTIFICATION

August 11, 2005

The LAS molecule contains an aromatic ring sulfonated at the para position and attached to a linear alkyl chain at any position except the terminal carbons. The alkyl carbon chain typically has 10 to 14 carbon atoms and the linearity of the alkyl chains ranges from 87 to 98%. While commercial LAS consists of more than 20 individual components, the ratio of the various homologues and isomers, representing different alkyl chain lengths and aromatic ring positions along the linear alkyl chain, is relatively constant in currently produced products, with the weighted average carbon number of the alkyl chain based on production volume per region between 11.7-11.8. LAS is supported as a category because of the close consistency of the mixtures, their commercial uses, fate, and health and environmental effects. LAS is the primary cleaning agent used in many laundry detergents and cleaners at concentrations up to 25 percent in consumer products, with the exception of one reported product at 45% percent in concentrated solid form that is mechanically dispensed into diluted solution for dishwashing.

1.1 GENERAL SUBSTANCE INFORMATION

A. Type of Substance

element []; inorganic []; natural substance []; organic [X]; organometallic []; petroleum product []

B. Physical State (at 20°C and 1.013 hPa)

gaseous []; liquid []; solid [X] for pure substance

C. Purity 87-98% Purity refers to the percent LAS, with iso-branched LAS and DATS considered to be impurities. The "activity" may also be stated, and represents the percent of active LAS in the solution (e.g., 50% active LAS is half strength LAS, the LAS of which will be 87-98% pure, with the remaining 50% consisting of water).

D. Manufacturing Process

LAS is manufactured from linear alkylbenzene (LAB) in self-contained, enclosed systems (see SIAR Annex, Format A, Section VI(1), for more information). LAB is produced by reacting paraffins with benzene and a catalyst and isolating the LAB by distillation. The LAB is then sulfonated, which in turn is then neutralized to sodium salts of LAS.

1.2 SYNONYMS

Linear alkylbenzene sulfonates LAS Sodium-n-alkyl (C₁₀₋₁₃) Benzene Sulfonate Numerous trade names, e.g. Marlon A

1.3 IMPURITIES

Remarks:	Dialkyltetralin Sulfonates (DATS) and single methyl-branched alkyl chain
	LAS (iso-LAS) make up minor components in commercial LAS.
	Concentrations range from <1 to 8% for DATS and <1 to 6% for iso-LAS,
	depending on the manufacturing process used. Recent market information
	(LAS SIDS Consortium, unpublished, 2005) indicates that less than 5% of
	the global LAS production contains high levels of DATS. Consequently,
	the average (based on production volume) linearity and purity of LAS
	worldwide is greater than 95%. The presence of DATS and iso-LAS did
	not significantly affect the biodegradation of LAS relative to the pure
	linear component, as both DATS and iso-LAS are biodegradable
	substances. This is discussed in detail in the summaries at section $3.5(x)$
	and 3.5(y).
References:	1) Nielsen, A.M., Britton, L.N., Beall, C.E., McCormick, T.P. and Russell,
	G.L. 1997. Biodegradation of coproducts of commercial linear
	alkylbenzene sulfonate. Environ. Sci. Technol. 31L3397-3404.
	2) Cavalli, L., Cassani, G., Lazzarin, M., Maraschin, C., Nucci, G., and
	Valtorta, L. 1996b. Iso-branching of linear alkylbenzene sulphonate
	(LAS). Tenside Surf. Det. 33:393-398.
	3) LAS SIDS Consortium, unpublished, 2005.

1.4 ADDITIVES

Value:	None
Remarks:	No additives

1.5 QUANTITY

(a) Remarks:	Year 2000 data, as reported in a Colin A. Houston report, indicate an estimated volume of LAS consumption in North America (United States
Reference:	and Canada combined) as 390,000 metric tonnes. Colin A. Houston. 2002. Surfactant Developments. Forecast to 2010. A Multiclient Study. Colin A. Houston & Associates, Inc., August 2002.
(b)	
Remarks:	In a market survey completed by ECOSOL in 2000, companies in Europe reported a total consumption of LAS of approximately 400,000 metric tonnes. This includes CAS numbers 1322-98-1, 25155-30-0, 68411-30-3, 85117-50-6 and 90194-45-9
Reference:	HERA. 2004. HERA-LAS Human and Environmental Risk Assessment: Linear Alkylbenzene Sulphonates, LAS. CAS No. 68411-30-3, Version 2.0, May 2004; available at <u>www.heraproject.com</u> .
(c)	
Řemarks:	Total LAS production for the companies surveyed in the most recent year for which data are available (generally 2002) was approximately 430,000 metric tonnes. Almost half of this production (198,000 metric tonnes) occurred in North America (United States and Canada combined). Production in Europe, as reported by the member companies surveyed, was approximately 152,000 metric tonnes. Data cited above in (a) and (b)

	for LAS consumption in the United States and Europe are viewed as the more reliable estimates, because all LAS producers are not included in the coalition member survey. Production in Japan, where all the LAS producers are members of the consortium, was 85,000 metric tonnes and is considered a reliable estimate.
Reference:	Industry Coalition for the SIDS Assessment of LAS Survey conducted in 2002 (LAS SIDS Consortium Survey, 2002).
(d)	
Remarks:	More than 1 million tonnes per annum produced globally based on: (1) 364 to 415 ktonnes produced annually in U.S. from 1987 to 1991; (2) 400 ktonne produced in Western Europe and 2570 ktonnes world-wide in 1995; (3) 950 ktonnes produced in Europe, North America and Japan in 1994; (4) 2 million tonnes consumed world-wide in 1990; (5) 410 ktonne produced in Western Europe, 2.6 million tonnes worldwide in 1995.
Reference:	 (1) CHIMICA OGGI, Sept. 1998 (2) EU Risk Assessment Report for LAB, May 1997 (3) IPCS Environmental Health Criteria 169, WHO, 1996 (4) Nielsen et al. 1997 (5) Soap and Detergent Association, 1996

1.6 LABELLING AND CLASSIFICATION

Labelling Remarks:	None designated
Classification	
Remarks:	None designated

1.7 USE PATTERN

A. General

Type of Use:	Category:
main	Wide dispersive use
industrial	Personal and domestic use
use	Cleaning/Washing agent

Remarks: About 78-97% of the LAS consumption worldwide is in liquid and powder consumer and industrial laundry and fine fabric detergents. Another 2-10% of the LAS produced is used in consumer and industrial dishwashing liquids, with the remainder (1-5%) used in other consumer and industrial cleaners.

B. Uses in Consumer Products

Function	Amount present	Physical state
detergent	up to 25% of formulation	powder or liquid

Remarks: LAS is an anionic surfactant that lowers the surface tension of water, enabling soils and stains to loosen and release from fabrics and surfaces. LAS is the primary cleaning agent used in many liquid and powder laundry detergents and speciality household cleaners at concentrations up to 25 percent of the total formulation.

The following table shows the percentage of LAS that occurs in various types of consumer detergent products.

Consumer Product	Range of	f Percent Composition that	at is LAS
Туре	North America	Europe	Japan
Laundry Detergents			
- Powders	5-25%	5-25%	5-25%
- Liquids	1-25%	5-10%	5-25%
- Tablets	5-25%	10-25%	5-25%
Liquid Fine Fabric			1 50/
Detergents	-	-	1-3%
Bleaches	-	-	0.1-0.5%
Pre-Washes	-	-	5-10%
Fabric Conditioners	0.1.0.50/		
(sheets)	0.1-0.3%	-	-
Dishwashing Detergents	5-25%	10 259/	1 50/
(liquids)		10-2376	1-370
General Cleaners	1-5%	1 50/	
(dilutable)		1-370	-
Hard Surface Cleaners	1-5%	0.1-0.5%	0.5-10%
Other Cleaners	-	-	0.1-0.5%
Face & Hand Soaps	1 50/		
(bar)	1-3%0	-	-

Reference:

1) Soap and Detergent Association 1996

2) Survey data for Industry Coalition for the SIDS Assessment of LAS. 2002.

C. Uses in Institutional and Industrial Products

The following table shows the percentage of LAS that occurs in various types of institutional and industrial detergent products.

Industrial Product	Range	of Percent Composition th	nat is LAS
Туре	North America	Europe	Japan
Laundry Detergents			
- Powders	5-25%	5-10%	5-10%
- Liquids	-	10-25%	-
Pre-Washes	-	10-25%	-
Dishwashing Detergents	5 100/	25.209/	5 209/
(liquids)	5-1076	23-3076	3-30%
General Cleaners			
- Dilutable	1-5%	-	-
- Spray	1-5%	-	-
Hard Surface Cleaners	-	-	1-10%
Disinfectants (liquids)	5-10%	-	-
Other Uses	25-30%*	10-25%	10-25%

* The only exception is a product containing 45% LAS that is a concentrated solid mechanically dispensed into diluted solution for dishwashing.

Reference:

1) Soap and Detergent Association 1996

2) Survey data for Industry Coalition for the SIDS Assessment of LAS. 2002.

1.8 OCCUPATIONAL EXPOSURE LIMIT VALUE

Exposure limit valueType:None established by OSHA, ACGIH or NIOSH

Short term exposure limit valueValue:None established by OSHA, ACGIH or NIOSH

1.9 SOURCES OF EXPOSURE

Remarks: Exposure to industrial workers is limited because this is an enclosed manufacturing process designed to minimize losses and the potential for release. Worker exposure is possible during the detergent formulation stage by inhalation of powders or dermal contact of powders and liquids. However, good manufacturing design practices (e.g. enclosed production, exhaust ventilation, dust collection) and personal protective equipment (e.g. protection clothing, eyewear, and glove) in place of at facilities that manufacture liquid and dry (granular/powder) materials sufficiently mitigate worker exposure to LAS. No special engineering controls or additional personal protective equipment are uniquely specified for LAS.

LAS is used primarily in household laundry and dishwashing cleaning products. After use, LAS is discharged into the wastewater treatment system. The exposure of the general human population and of environmental organisms depends on the application of LAS, the local sewage treatment practices, and on the characteristics of the receiving environment.

It is reasonable to consider that the tasks with the greatest exposure to the consumer are hand dishwashing and hand washing of clothing.

Reference: 1) EU Risk Assessment Report for LAB, May 1997.2) IPCS Environmental Health Criteria 169, WHO, 1996.

1.10 ADDITIONAL REMARKS

A. Options for disposal

Remarks: Unused LAS may be recovered for reprocessing or disposed of by incineration or landfill or by flushing to sewage system; used material enters sewage system and is treated at WWTP. Spills may be recovered for reprocessing or disposal.
 Reference: MSDS.

B. Other remarks

(a)

Remarks: The majority of LAS is disposed of in sewage during use as cleaning/washing agents.

Reference: Soap and Detergent Association 1996.

(b)

- Methods: A study conducted for the Soap and Detergent Association (Battelle 1999) measured the under 10 micron fraction delivered from 6 consumer product spray nozzles. The six standard trigger sprayers (TS800) were manufactured by Calmar Dispensing System, Inc. The specified average output of the sprayers, based on water at 90 strokes per minute, is no less than 0.75 mL per stroke. The specified spray pattern is a nearly circular pattern with a diameter of no less than four inches at a distance of approximately eight inches. The six trigger sprayers were evaluated to determine emitted aerosol size distribution, output per stroke and spray pattern in order to avoid choosing a trigger sprayer with abnormal characteristics for the experiment. Size distribution of aerosols generated from the six sprayers was measured using a laser diffraction particle sizer (Mastersizer Model X, Malvern Intruments Ltd).
- Remarks: The overall mean (n=30) is 0.11% particles under 10 microns and the standard deviation is 0.21. The very highest observation was 0.80% particles under 10 microns. This testing only captured the spray particles that are under 600 microns, so the actual mean respirable particle percent of total volume sprayed is less than 0.1%. The Battelle (1999) study also reported that for consumer spray products in normal use conditions, the peak breathing zone concentration under 10 microns ranged from 0.13-0.72 mg/m³. HERA (2004) reported that measurements of aerosol particles under 6.4 microns in size generated upon spraying with typical surface cleaning spray products resulted in a product concentration of 0.35 mg/m³. These estimates of exposure to respirable particles from consumer spray products indicate that inhalation is not a likely route of concern for human exposure (see SIAR Annex 1 for more information). Estimates of inhalation exposure apply to both consumer and commercial

products as both use the same type of spray nozzles (for spray cleaners) and the same type of equipment to make powder/granulated products. The human experience with eye irritation covers both manufacturing and use of consumer and commercial products.
References: 1) Battelle, Inc. 1999. Measurement and characterization of aerosols generate from a consumer spray product-pilot study. Final report to the Soap and Detergent Association. Battelle Study No. N003043A. January.
2) HERA. 2004. Linear Alkylbenzene Sulphonate, LAS. Human & Environmental Risk Assessment on ingredients of European household cleaning products. Version 2.0, May 2004. http://www.heraproject.com/RiskAssessment.cfm

(c)

Methods: A comprehensive testing program was undertaken to evaluate consumer exposure to dust from powdered enzyme detergent use in comparison with worker exposure at factories. Airborne dust was collected in consumers' homes during normal use of laundry detergents. Consumer use of laundry products was then simulated in the laboratory to permit collection of sufficient samples for analysis of the amount of enzyme in detergent dust, and for detergent dust particle size distribution determinations and persistence measurements. Representative commercial products sold by Procter & Gamble were tested. Air sampling was carried out using an electrostatic precipitator using a battery powered source and was conducted continuously from the time each housewife began to pour laundry product for use until she left the laundry area. The entry orifice of the sampling device was located at a point spatially equivalent to the direction and distance from the housewife's nose from the point of dust generation. Laboratory simulation of consumer practices was based on extensive consumer habits developed by a variety of conventional techniques.

Remarks: The results of the in-home studies indicate that detergents contribute only 5% of the dust present during the time detergents are dispensed for laundering, with the rest of the dust believed to be mainly lint. Virtually all detergent dust (95%) settled in less than 2 minutes. On average, there is 0.27 µg detergent dust exposure per cup of product used for double-pour machine laundering. Based on this amount, HERA (2004) calculated the amount of LAS exposure from laundry detergent use. Up to 22% (0.06 µg/use) of the detergent dust can be expected to be LAS. Assuming a worst case exposure (all dust is inhaled and laundry is done 3 times a day), the exposure to LAS of an average adult is estimated to be 0.003 µg/kg bw/day. This amount does not contribute significantly to the total exposure of LAS as compared to the amount from inhalation of aerosols from cleaning sprays, which is approximately 10-fold higher (0.04 μ g/kg bw/day). References: 1) Hendricks, M.H. 1970. Measurement of enzyme laundry detergent product

Hendricks, M.H. 1970. Measurement of enzyme laundry detergent product dust levels and characteristics in consumer use. J. Am. Oil Chem. Soc. 47:207-211.
HERA. 2004. Linear Alkylbenzene Sulphonate, LAS. Human & Environmental Risk Assessment on ingredients of European household cleaning products. Version 2.0, May 2004. http://www.heraproject.com/RiskAssessment.cfm

2. <u>PHYSICAL-CHEMICAL DATA</u>

2.1 MELTING POINT

(a)	
Value:	198.5°C
Decomposition:	Onset at 444°C (47% weight loss at 500°C)
Method:	Thermal analysis was performed on the Netzsch DSC 204C and TG209C
	with N_2 atmosphere.
GLP:	Yes [] No [X] ? []
Test Substance:C ₁₀₋₁₄ N	Aonoalkylbenzene sulfonic acid, sodium salt (CAS #85117-50-6); mean molecular weight = 348, average alkyl chain length = $C_{12.0}$. The test material is a commercial product, contains 85% active matter and is a coarse, cream-colored powder at 25°C.
Remarks:	This measured melting point value is significantly lower than the EPI Suite estimated values for other LAS materials. Note that the activity represents the total percent active materials (LAS, iso-LAS and DATS) in the test substance. The nonactive material in a powdered sample of LAS is likely sodium sulfate and other salts which have very high melting points (e.g., sodium sulfate = 884°C) and would not interfere with the measurement of the LAS melting point.
Reference:	Huntsman. 2002. Report of melting point analysis for NANSA HS 85/5. Cover memo from A. Ashworth to K.B. Sellstrom dated April 12, 2002.
Reliability:	2 Valid with restrictions
(b)	27.4%
Value:	2/4°C
Decomposition:	Not identified
Method:	Estimation: EPI Suite (Mean or Weighted MP)
GLP:	Yes [] No [X] ? []
Test Substance: C ₁₀ LAS	S (CAS #1322-98-1)
Remarks:	Structure modeled is the pure C_{10} sodium salt homologue, 2-phenyl isomer, not the commercial material.
Reference:	USEPA. 2000. EPI Suite v3.10.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.
5	
(c)	
Value:	279°C
Decomposition:	Not identified
Method:	Estimation: EPI Suite (Mean or Weighted MP)
GLP:	Yes [] No [X] ? []
Test Substance: C ₁₁ LAS	S (CAS #27636-75-5)
Remarks:	Structure modeled is the pure C_{11} sodium salt homologue. 2-phenyl
	isomer, not the commercial material.
Reference [.]	USEPA 2000 EPI Suite v3 10
Reliability.	2 Valid with restrictions Standard EPA estimation software
itemuoning.	2 Fund Whit resultations. Standard EFFF estimation Service.
(d)	
Value:	284°C
Decomposition:	Not identified
Method:	Estimation: EPI Suite (Mean or Weighted MP)
GLP:	Yes [] No [X] ? []

Test Substance: C ₁₂ LAS	S (CAS #25155-30-0)
Remarks:	Structure modeled is the pure C_{12} sodium salt homologue, 2-phenyl isomer, not the commercial material.
Reference:	USEPA. 2000. EPI Suite v3.10.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.
(e)	
Value:	290°C
Decomposition:	Not identified
Method:	Estimation: EPI Suite (Mean or Weighted MP)
GLP:	Yes [] No [X] ? []
Test Substance: C ₁₃ LAS	S (CAS #26248-24-8)
Remarks:	Structure modeled is the pure C_{13} sodium salt homologue, 2-phenyl isomer, not the commercial material.
Reference:	USEPA. 2000. EPI Suite v3.10.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.

2.2 BOILING POINT

(a)	
Decomposition:	Onset at 444°C (47% weight loss at 500°C)
Method:	Thermal analysis was performed on the Netzsch DSC 204C and TG209C
	with N ₂ atmosphere.
GLP:	Yes [] No [X] ? []
Test Substance: C ₁₀₋₁₄ m	nonoalkylbenzene sulfonic acid, sodium salt (CAS #85117-50-6); mean
	molecular weight = 348, average alkyl chain length = $C_{12.0}$. The test material is a commercial product, contains 85% active matter and is a coarse, cream-colored powder at 25°C.
Remarks:	Note that the activity represents the total percent active materials (LAS, iso-LAS and DATS) in the test substance. The nonactive material in a powdered sample of LAS is likely sodium sulfate and other salts which have very high melting points (e.g., sodium sulfate = 884° C) and would not interfere with the measurement of the LAS melting point.
Reference:	Huntsman. 2002. Report of melting point analysis for NANSA HS 85/5. Cover memo from A. Ashworth to K.B. Sellstrom dated April 12, 2002.
Reliability:	2 Valid with restrictions
(b)	
Value:	630°C
Method:	Estimation: EPI Suite (Adapted Stein & Brown method)
GLP:	Yes [] No [X] ? []
Test Substance: C10 LAS	S (CAS #1322-98-1)
Remarks:	Structure modeled is the pure C_{10} sodium salt homologue, 2-phenyl isomer, not the commercial material.
Reference:	USEPA. 2000. EPI Suite v3.10.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.

(c)	
Value:	642°C

Method:	Estimation: EPI Suite (Adapted Stein & Brown method)	
GLP:	Yes [] No [X] ? []	
Test Substance: C ₁₁ LAS	S (CAS #27636-75-5)	
Remarks:	Structure modeled is the pure C ₁₁ sodium salt homologue, 2-phenyl	
	isomer, not the commercial material.	
Reference:	USEPA. 2000. EPI Suite v3.10.	
Reliability:	2 Valid with restrictions. Standard EPA estimation software.	
(d)		
Value:	654°C	
Method:	Estimation: EPI Suite (Adapted Stein & Brown method)	
GLP:	Yes [] No [X] ? []	
Test Substance: C ₁₂ LAS	S (CAS #25155-30-0)	
Remarks:	Structure modeled is the pure C_{12} sodium salt homologue, 2-phenyl isomer, not the commercial material.	
Reference:	USEPA. 2000. EPI Suite v3.10.	
Reliability:	2 Valid with restrictions. Standard EPA estimation software.	
(e)		
Value:	665°C	
Method:	Estimation: EPI Suite (Adapted Stein & Brown method)	
GLP:	Yes [] No [X] ? []	
Test Substance: C_{13} LAS (CAS #26248-24-8)		
Remarks:	Structure modeled is the pure C_{13} sodium salt homologue, 2-phenyl	
	isomer, not the commercial material.	
Reference:	USEPA. 2000. EPI Suite v3.10.	
Reliability:	2 Valid with restrictions. Standard EPA estimation software.	

2.3 DENSITY

(a)	
Type:	Bulk density []; Density []; Relative Density [X]
Value:	1.06 g/cm^3
Temperature:	20°C
GLP:	Yes [] No [X] ? []
Test Substance:Marlon	A 390 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = $C_{11.6}$
Remarks:	Source cited in IUCLID is Sicherheitsdatenblatt "Marlon A 390; Huels Ag. vom 03.12.93
Reference:	Cited in IUCLID Data Sheet for CAS #68411-30-3.
Reliability:	4 Not assignable. Original report not available for review.
(b)	
Type:	Bulk density [X]; Density []; Relative Density []
Value:	$0.45 \text{ g/cm}^3 (450 \text{ kg/m}^3)$
Temperature:	20°C
GLP:	Yes [] No [] ? [X]
Test Substance:C ₁₀₋₁₄ n	nonoalkylbenzene sulfonic acid, sodium salt (CAS #85117-50-6); mean molecular weight = 348, average alkyl chain length = $C_{12.0}$. The test material is 85% active matter and is a coarse, cream-colored powder at 25°C.

Reference:	Huntsman 2002. Report on the melting point analysis for NANSA HS 85/S. Attached technical bulletin dated 04-01-1994. Cover memo from A. Ashworth to K.B. Sellstrom dated April 12, 2002.
Reliability:	4 Not assignable. Original report not available for review.
(c)	
Type:	Bulk density [X]; Density []; Relative Density []
Value:	ca. 550 kg/m ³
GLP:	Yes [] No [X] ? []
Test Substance:Marlon	A 390 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = $C_{11.6}$
Remarks:	Source cited in IUCLID is Sicherheitsdatenblatt "Marlon A 390; Huels Ag. vom 03.12.93
Reference:	Cited in IUCLID Data Sheet for CAS #68411-30-3.
Reliability:	4 Not assignable. Original report not available for review.

2.4 VAPOR PRESSURE

(a)	
Value:	$3 \times 10^{-13} \text{ Pa}$
Method:	Calculation
Test Substance:C ₁₂	LAS (CAS #25155-30-0)
Remarks:	Cites estimates calculated by Lyman (see References).
Reference:	 HERA. 2002. HERA-LAS Human and Environmental Risk Assessment: Linear Alkaylbenzene Sulphonates, LAS. CAS No. 68411- 30-3, Draft #6, May 2002. Lyman, W.J. 1985. Environmental exposure from chemicals, V.I, p.31, Neely, W.B., and Blau, G.E., editors. CRC Press. Boca Raton.
Reliability:	4 Not assignable. Original report not available for review.
(b)	
Value:	$2.88 \times 10^{-12} \text{ Pa}$
Temperature:	25°C
Method:	Estimation: EPI Suite (Modified Grain Method)
GLP:	Yes [] No [X] ? []
Test Substance:C ₁₀	LAS (CAS #1322-98-1)
Remarks:	Structure modeled is the pure C_{10} sodium salt homologue, 2-phenyl isomer, not the commercial material.
Reference:	USEPA. 2000. EPI Suite v.3.10.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.
(c)	
Value:	$1.22 \ge 10^{-12} \operatorname{Pa}$
Temperature:	25°C
Method:	Estimation: EPI Suite (Modified Grain Method)
GLP:	Yes [] No [X] ? []
Test Substance:C ₁₁	LAS (CAS #27636-75-5)
Remarks:	Structure modeled is the pure C_{11} sodium salt homologue, 2-phenyl isomer, not the commercial material.
Reference:	USEPA. 2000. EPI Suite v.3.10.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.

5.13 x 10 ⁻¹³ Pa
25°C
Estimation: EPI Suite (Modified Grain Method)
Yes [] No [X] ? []
S (CAS #25155-30-0)
Structure modeled is the pure C_{12} sodium salt homologue, 2-phenyl isomer, not the commercial material.
USEPA. 2000. EPI Suite v.3.10.
2 Valid with restrictions. Standard EPA estimation software.
$2.16 \times 10^{-13} \text{ Pa}$
25°C
Estimation: EPI Suite (Modified Grain Method)
Yes [] No [X] ? []
Yes [] No [X] ? [] S (CAS #26248-24-8)
Yes [] No [X] ? [] S (CAS #26248-24-8) Structure modeled is the pure C ₁₃ sodium salt homologue, 2-phenyl
Yes [] No [X] ? [] S (CAS #26248-24-8) Structure modeled is the pure C ₁₃ sodium salt homologue, 2-phenyl isomer, not the commercial material.
Yes [] No [X] ? [] S (CAS #26248-24-8) Structure modeled is the pure C_{13} sodium salt homologue, 2-phenyl isomer, not the commercial material. USEPA. 2000. EPI Suite v.3.10.

2.5 PARTITION COEFFICIENT log₁₀P_{ow} (log₁₀K_{ow})

(a)	
Log Pow:	3.32
Method:	Calculation
GLP:	Yes [] No [X] ? []
Test Substance:C _{11.}	₆ LAS
Remarks:	Calculated for $C_{11.6}$ LAS using the QSAR method of Leo and Hansch (1979) as modified by Roberts (1991) for surfactant structures. This takes into account the various phenyl positions along the linear alkyl chain. See the Roberts (1991) summary at 2.5(g) for a full description of the method modifications.
Reference:	 HERA. 2002. HERA-LAS Human and Environmental Risk Assessment: Linear Alkylbenzene Sulphonates, LAS. CAS No. 68411- 30-3, Draft #6, May 2002. Leo, A.J. and Hansch, C. 1979. Substituent Constants for Correlation Analysis in Chemistry and Biology. J. Wiley & Sons, N.Y. Roberts, D.W. 1991. QSAR issues in aquatic toxicity of surfactants. Sci. Total Environ. 109/110:557-568.
Reliability:	2 Valid with restrictions. These results are considered reliable because a standard calculation technique was employed.

Remarks:	Structure modeled is the pure C_{10} sodium salt homologue, 2-phenyl isomer, not the commercial material.
Reference:	USEPA. 2000. EPI Suite v3.10.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.
(c)	2.42
Log Pow:	2.43
Method:	Estimation: EPI Suite
GLP:	Yes[] No[X] ?[]
Test Substance: C ₁₁ LAS	S (CAS #2/636-75-5)
Remarks:	Structure modeled is the pure C_{11} sodium salt homologue, 2-phenyl
D ()	isomer, not the commercial material.
Reference:	USEPA. 2000. EPI Suite v3.10.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.
(d)	
Log Pow:	2.92
Method:	Estimation: EPI Suite
GLP:	Yes [] No [X] ? []
Test Substance: C ₁₂ LAS	S (CAS #25155-30-0)
Remarks:	Structure modeled is the pure C_{12} sodium salt homologue, 2-phenyl
	isomer, not the commercial material.
Reference:	USEPA. 2000. EPI Suite v3.10.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.
(e)	
Log Pow:	3.42
Method:	Estimation: EPI Suite
GLP:	Yes [] No [X] ? []
Test Substance: C ₁₃ LAS	S (CAS #26248-24-8)
Remarks:	Structure modeled is the pure C_{13} sodium salt homologue, 2-phenyl
	isomer, not the commercial material.
Reference:	USEPA. 2000. EPI Suite v3.10.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.
(f)	
Remarks:	In its review of LAS and related compounds, IPCS notes that while the
	octanol-water partition coefficient can be calculated in practice, it is
	impossible to measure P_{ow} for surface-active compounds like LAS. This
	has been confirmed by Roberts (2000).
Reference:	1) IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene
	Sulfonates and Related Compounds. World Health Organization, Geneva,
	Switzerland.
	2) Roberts, D.W. 2000. Use of octanol/water partition coefficient as
	hydrophobicity parameters in surfactant science. 5 th World CESIO
	Congress 2:1517-1524, May-June 2000, Firenze, Italy.
(g)	
Methods:	Acute lethal toxicity data for a range of anionic and non-ionic surfactants
	were analyzed with the objective of determining whether QSARs can be
	developed relating toxicity to calculated log P values. Approaches to
	dealing with the deficiencies in the Leo and Hansch (1979) fragment

method for calculating log P of surfactants (related to mixtures and phenyl isomer position) were developed and applied to the general narcosis QSAR of Könemann (1981) as represented by Equation 1:

$$Log (1/LC_{50}) = 0.87log P + 1.13$$
 (EQ 1)

(for 14-d LC₅₀ tests on guppies; n = 50, r = 0.998, s = 0.237)

Mixtures

Two approaches were taken in this paper to address mixtures. In the first approach, P was calculated for each component individually then multiplied by the mole fraction and summed to give a weighted average log P. Alternatively, when only the overall average composition was known, log P was calculated for the average structure.

Phenyl isomer position

Since the fragment method gives values for log P that are independent of branch (i.e., phenyl isomer) position, a position-dependent branch factor (PDBF) was defined. Branching results in a decrease in the number of water molecules required to solvate the hydrocarbon chain by allowing water molecules to be shared between the two branches. Where both branches are long the water sharing effect should continue, although to a decreasing extent with increasing distance from the branching position, as long as the branches can be paired. To model this, a water sharing function log (CP + 1) was defined in which CP is found by pairing off carbon atoms along the two branches up to the terminus of the shorter branch. Regression analysis correlating log $(1/LC_{50})$ to goldfish with a combination of ALP [representing log P calculated without a branch factor] and log (CP + 1) [representing the water sharing function]:

$$Log (1/LC_{50}) = 0.78ALP - 1.13 log (CP + 1) + 2.06$$
 (EQ 2)

(for LC₅₀ tests on guppies; n = 20, r = 0.997, s = 0.041)

Further, dividing the first two terms on the right of EQ 2 by 0.78 gave, assuming the role of the second term to be solely that of the branching factor, the following equation:

$$Log P = ALP - 1.44 log (CP + 1)$$
(EQ 3)

Thus, the PDBF was defined as $-1.44 \log (CP + 1)$. Further details on this method are described in Roberts (1989).

Log P values calculated using EQ 3 were found to give good correlations with published river sediment sorption partition coefficients for LAS compounds, supporting the applicability and validity of the PDBF. Log P values calculated using EQ 3 were also used successfully in regression of toxicity data for pure LAS homologues and isomers to *Daphnia magna* and *Gammarus pulex*. The basic equation is similar to EQ 1 and has the general form:

$$Log (1/LC_{50}) = alog P + b$$
 (EQ 4)

	Daphnia (H)	Daphnia (S)	Gammarus (H)	Gammarus (S)
Value of <i>a</i>	0.7	0.64	0.76	0.71
Value of <i>b</i>	2.23	2.44	2.46	2.27
Regression				
data				
п	9	12	9	11
r	0.987	0.955	0.966	0.950
S	0.07	0.15	0.13	0.16
F	263	103	98	83

with the values for a, b and regression data shown in the following table:

Notes: $H = hard water (250 mg/L CaCO_3)$; $S = soft water (25 mg/L CaCO_3)$. Strongly negative outliers omitted.

The log P coefficients and intercepts for goldfish, Daphnia, and Gammarus are all intermediate between those of Könemann's QSAR equation (EQ 1), suggesting that a narcosis (possibly polar) mechanism applies to LAS acute toxicity. Results: Agreement between observed and calculated toxicities for LAS is good. The fact that QSARs derived from compounds whose log P values are calculated with the PDBF give good predictions for unbranched compounds supports the validity of the PDBF for the type of branching encountered in LAS. Remarks[.] The analyses presented in this paper indicates that the problems of calculating log P for surfactants can be overcome. The case for the applicability of the PDBF appears compelling, although it is based on indirect evidence. In terms of acute aquatic toxicity, anionic surfactants like LAS do not seem greatly different from unreactive non-surfactant organic chemicals. Anionic surfactants of various types have $\log (1/LC_{50})$ values which are well predicted on the basis of their calculated log P values by QSAR equations resembling those associated with the polar narcosis mechanism. Reference: 1) Roberts, D.W. 1991. OSAR issues in aquatic toxicity of surfactants. The Science of the Total Environment 10/110:557-568. 2) Roberts, D.W. 1989. Aquatic toxicity of linear alkyl benzene

sulphonates (LAS) – A QSAR Approach. Communicaciones presentadas a las Jornada del Comite Espanol de la Detergencia 20:35-43. Also in J.E. Turner, M.W. England, T.W. Schulz and N. J. Kwaak (Eds) QSAR 88.
Proc. Third Int. Workshop on Quantitative Structure-Activity Relationships in Environmental Toxicology 22-26 May 1988, Knoxville, TN, pp. 91-98. Available from NTIS.
3) Könemann, H. 1981. Quantitative structure-activity relationships in fish

toxicity studies: Part I. Relationships for 50 industrial pollutants. Toxicology 19:209-221.

4) Leo, A.J. and Hansch, C. 1979. Substituent Constants for Correlation Analysis in Chemistry and Biology, New York.

Reliability: 2 Valid with restrictions. Well documented QSAR analysis.

2.6 WATER SOLUBILITY

A. Solubility

(a) Value: Description: Method: GLP: Test Substance:C ₁₂ LA Remarks:	CMC = 0.1 g/L (C ₁₂ LAS) Miscible in water Surface tension of aqueous solutions of NaLAS was measured by an automated Lauda TE IC by the duNouy ring method. All solutions were prepared with water passed through a Nanopure water filter system and with sufficient salt to equalize the ionic strength. Solubility of commercial NaLAS was determined by slowly lowering the temperature in a Fisher Isotemp incubator over several days and recording the temperature at which the solutions first turned cloudy (cloud point). Clear points were determined by raising the temperature slowly over several days and recording when the solution cleared. The solubility of the C ₁₂ narrow- distribution phenyl isomers was determined by heating a saturated solution to 70°C for 0.5-3 h and then cooling to 5°C. After equilibrating to room temperature overnight, the cloudy mixture was centrifuged, and the clear supernatant drawn off, weighed, and dehydrated to determine percentage solids. The percentage dissolved was then calculated from the weight loss to the supernatant. Yes [] No [] ? [?] S and commercial C ₁₁₋₁₃ LAS (sodium salts) Surface activity increased with increasing average alkyl chain length. Some decrease in surface tension was observed with increasing phenyl isomer number, but the range of phenyl isomer distribution of commercial products is not large enough to significantly alter the surface tension vs. log concentration plot. Increasing the average alkyl chain length of LAS decreases solubility (i.e., increases cloud point). The following table shows the critical micelle concentration (CMC) for various chain lengths	
	Chain length, isomer composition, dialkyltetralin	CMC (g/L)
	Sulfonate content	0.120
	C high 2 phonyl high dialkyltetralingulfonate	0.120
	C_{11} ling 2-phenyl, ling dialkyltetralingulfonate	0.120
	C ₁₁ low 2-phenyl, low dialkyltetralingulfonate	0.120
	C_{12} low 2-phenyl, low dialkyltetralingulferate	0.103
	C ₁₃ low 2-phenyl, low dialkylietralinsullonate	0.038
Reference: Reliability:	Smith, D.L. 1997. Impact of composition on the performa linear alkylbenzenesulfonate (NaLAS). JAOCS 74:837-845 2 Valid with restrictions	nce of sodium
(b)		
Value [.]	>250 g/L	
Description:	Miscible in water	
GLP.	Ves [1] No [1] 2 [2]	
Test Substance: Various	s LASs made from four commercial LABs, average alkyl of 11.6	chain length =
Remarks:	The study shows that 25% solutions (250 g/L) of various LA clear points (i.e., form clear solutions at rising tem temperatures of 2-21°C, depending on LAS composition. C points decrease dramatically with increasing 2-phenyl isome	ASs have cloud nperatures) at Cloud and clear er composition.

Reference:	The results demonstrate that 25% solutions of LAS are soluble at room temperature. Cohen, L., Vergara, R., Moreno, A. and Berna, J.L. 1995. Influence of 2- phanyl alkana and talralin contant on solubility and viscosity of linear
	alkylbenzene sulfonate. JAOCS 72:115-122.
Reliability:	2 Valid with restrictions
(c)	
Value:	ca. 250 g/L
Temperature:	20°C
Description:	Miscible in water
GLP:	Yes [] No [X] ? []
Test Substance:Marlon	A 390 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = 11.6
Remarks:	Miscible with water at 20° C. Depending on the concentration, clear solutions (up to ~25% w/w) or inhomogeneous, viscous pastes were obtained. Sources cited are two reports by Huels AG dated 1988 and 1993.
Reference:	Cited in IUCLID Data Sheet for CAS #68411-30-3.
Reliability:	4 Not assignable. Original report not available for review.

B. pH Value, pKa Value

(a)	
pH Value:	10.0 ± 1.0 (1% solution)
GLP:	Yes [] No [] ? [X]
Remarks:	C_{10-14} monoalkylbenzene sulfonic acid, sodium salt (CAS #85117-50-6); mean molecular weight = 348, average alkyl chain length = $C_{12.0}$
Reference:	Huntsman 2002. Report on the melting point analysis for NANSA HS 85/S. Attached technical bulletin dated 04-01-1994. Cover memo from A. Ashworth to K.B. Sellstrom dated April 12, 2002.
Reliability:	4 Not assignable. Original report not available for review.
(b)	
pKa Value:	<1 for aromatic sulfonic acids such as benzosulfonic acid
Reference:	Hodgman, C.D. 1961. Handbook of Chemistry and Physics, 43 rd edition. The Chemical Rubber Publishing Company, Cleveland, Ohio.
Reliability:	4 Not assignable. Original data not available for review.

2.7 FLASH POINT (liquids)

Remarks: Not applicable.

2.8 AUTO FLAMMABILITY (solid/gases)

Remarks: Not applicable.

2.9 FLAMMABILITY

Remarks: Not applicable.

2.10 EXPLOSIVE PROPERTIES

Remarks: Not applicable.

2.11 OXIDISING PROPERTIES

Remarks: Not applicable.

2.12 OXIDATION: REDUCTION POTENTIAL

Remarks: Not applicable.

2.13 ADDITIONAL DATA

A. Henry's law constant

Value:	6.37×10^{-3} Pa m ³ /mole
Method:	Estimation: EPI Suite
GLP:	Yes [] No [X] ? []
Test Substance:LAS (C	AS #25155-30-0)
Remarks:	Calculated using the bond method detailed in Meylan and Howard (1991)
	and the input parameters resident in the EPI Suite database. Assumes
	25° C, molecular weight 348.48. Data reported in EPI Suite as 6.29 x 10^{-8}
	atm-m ³ /mole and converted to Pa m ³ /mole.
Reference:	1) USEPA. 2000. EPI Suite v3.10.
	2) Meylan, W.M. and Howard, P.H. 1991. Bond contribution method for
	estimating Henry's law constant. Environ. Toxicol. Chem. 10:1283-
	1293.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.
Reliability:	2 Valid with restrictions. Standard EPA estimation software.

3. <u>ENVIRONMENTAL FATE AND PATHWAYS</u>

3.1 STABILITY

3.1.1 PHOTODEGRADATION

(a)	
Tvpe:	Air []: Water [X]: Soil []: Other []
Light source.	Sunlight [1: Xenon lamp [1: Other [X] Mercury vapor lamp
Light spectrum	200-350 nm
Concentration:	Initial LAS concentration 60 to 182 mg/l
Temperature:	28°C
Direct photolysis	200
Degradation:	>95 % (weight/weight) after 20 minute (exposure time)
Indirect Photolysis	² ³ ³ ⁶ (weight weight) after 20 minute (exposure time)
Degradation:	Ranid photodegradation
Method:	A series of photodegradation studies were conducted Aqueous solution
Wiethiou.	of LAS (nH 6.75) were passed through an irradiated tubular flow reactor
	Reaction rates were obtained for both non-sensitized conditions and when
	farric perchlorate (0.04 to 3.15×10^{-4} g mole/L) was used as a sensitizer
	A Hanovia 1200 watt mercury vanor lamp was the source of radiation
	The LAS concentration was determined by the methylane blue method
	Appropriate controls ware used
CID	Appropriate controls were used.
ULF. Test substance:	$1 \subset S[1] \cap O[A] ? [1]$ LAS: activity: 050/ (CAS #25155.20.0)
Pomorka:	LAS, activity. 95% (CAS #25155-50-0)
Remarks.	complete conversion of LAS to intermediates at an average residence time
	as low as 1 minute. The maximum conversion to CO_2 was obtained at a radidance time of 20 minutes and corresponded to 7 males CO, nor male
	residence time of 20 minutes and corresponded to 7 moles CO_2 per mole
	of LAS. Reaction fate increases by two orders of magnitude in presence
	LAS concentration explained the data for nonconsitized conditions. An
	LAS concentration explained the darived by assuming a second order
	appropriate rate equation could be derived by assuming a second-order
	deactivation of light-activated LAS molecules. The sensitized feaction
	was believed to occur by abstraction of hydrogen atoms from LAS by
	alestron transfer resolver investigation light estimated forming. The
	electron-transfer reaction involving light-activated ferric ions. The
	mechanism is complex, over-all kinetics indicated a first-order effect of (Γ_{2}^{+3}) , 1.2 and a in light interactive and mechanism in the sets for intermediate
	(Fe ⁻), 1.2 order in light intensity, and maxima in the rate for intermediate
DC	LAS and O_2 concentrations.
Reference:	Matsuura, 1. and Smith, J.M. 1970. Kinetics of photodecomposition of
	dodecyl benzene sulfonate. Ing. Eng. Chem. Fund. 9:252-260.
Reliability:	2 Valid with restrictions
(D) Tomos	A in [], Western (W), Coll [], Oslern []
Type:	Air []; water [A]; Soli []; Other []
Light source:	Sunlight []; Xenon lamp [X]; Other []
Spectrum:	>330 nm
Concentration:	50 mg/L
I emperature:	25°C; during photolysis the solution temperature reached 35-40°C.
Indirect Photolysis:	
Type of sensitizer:	110_2 suspension
Degradation:	Rapid photodegradation of LAS (<1 to 2 hours)

Method:	A study was conducted to determine the photodegradation of LAS in aqueous TiO ₂ dispersions. Experiments were carried out with 25 mL solutions containing LAS surfactant with TiO ₂ . Some experiments used open vessels (37 mL Pyrex glass reaction vessels) under aerobic conditions. Others used vessels sealed with a rubber septum, the solution purged with argon and a fixed volume of oxygen injected. Spectrophotometric analysis was performed at regular intervals.
GLP:	Yes [] No [] ? [X]
Test substance:	LAS (CAS #25155-30-0)
Remarks:	The reaction involves fast decomposition of the aromatic ring followed by
Reference:	slower oxidation of the aliphatic chain. Hidaka, H., Kubata, H., Gratzel, M., Serpone, N. and Pelizzetti, E. 1985. Photodegradation of surfactants. I. Degradation of sodium dodecyl sulfonate in aqueous semiconductor dispersions. Nouveau J. Chemie 9:67-69.
Reliability:	2 Valid with restrictions
(-)	
(c) Type: Light source: Light spectrum: Spectrum: Concentration: Temperature:	Air []; Water [X] ; Soil []; Other [] Sunlight []; Xenon lamp []; Other [X] Mercury lamp 400-580 nm 223 nm 100 mg/L H ₂ 0 20°C
Indirect Photolysis:	
Results:	Humic substances Photodegradation of LAS was reduced by humic substances by a factor of 2 or more. The aliphatic side chains are degraded first, followed by aromatic ring cleavages. Degradation follows first order kinetics both with and without the presence of humics.
Method:	The effects of humics on the photolytic degradation of LAS was studied. Soil humic substances were extracted by a cationic exchange resin/water suspension from a humic podzol. Water-soluble synthetic humic substances were prepared by autoxidation of pyrogallol in alkaline solution. Aqueous solutions of 15 mg/L humic substance and 100 mg/L LAS were irradiated with a mercury lamp. Photometric measurements were performed with a spectrophotometer for recording the changes caused by photolysis at definite times at 223 nm for LAS.
GLP:	Yes [] No [] ? [X]
Test substance:	LAS (CAS #25155-30-0)
Remarks:	The presence of humic substances delays photodegradation of LAS, primarily because they act as UV-absorbers. The reaction between humics and LAS is dominated by electrostatic repulsion because of the negatively charged components at the given pH. The hydrophobic interaction between humics and LAS is relatively weak compared to the electrostatic repulsion. Possibly the sulfonic groups from LAS may be bound by metal bridges to humic surfaces. The study used humic substance with a relatively high proportion of aromatic carbon; whereas a lower proportion is more typical in natural environments. Therefore, the difference in photolysis rate is likely to be less pronounced.

Reference:	Hermann, R., Gerke, J. and Ziechmann, W. 1997. Photodegradation of
	the surfactants LAS and dodecylpyridinium-chloride as affected by humic
	substances. Water, Air, and Soil Pollution 98:45-55.
Reliability:	2 Valid with restrictions

3.1.2 STABILITY IN WATER

Туре:	Abiotic (hydrolysis) [X]; biotic (sediment)[]
Results:	LAS is stable in water.
GLP:	Yes [] No [X] ? []
Test substance:	C ₁₀₋₁₃ alkylbenzene sulfonic acid, sodium salt (CAS #68411-30-3)
Remarks:	LAS can be decomposed at extreme conditions such as elevated
	temperatures in the presence of inorganic acids such as phosphoric,
	sulphuric and hydrochloric acid, e.g.: 60-70% sulphuric acid at 140 - 190
	degree C or with concentrated HCl in a sealed container at 150 - 200
	degree C. Information as cited in IUCLID Data Sheet for CAS #68411-
	30-3 and in an analytical textbook.
Reference:	Cross, J. and Dekker, M. (ed.). 1977. Anionic surfactants: Chemical
	analysis. Vol.8. Pp. 111-115.
Reliability:	4 Not assignable. Original studies not available for review.

3.1.3 STABILITY IN SOIL

(a)	
Туре:	Laboratory
Radiolabel:	Yes [X] No []?[]
Concentration:	27.2 mg/kg (Ecosystem Section I) and 16.2 mg/kg (Ecosystem Section II) (initial amounts in dry soil); 0.44 mg/kg (I) and 0.19 (II) (at end of trials)
Temperature:	Room temperature
Dissipation Time:	$DT_{50} = 13-26 \text{ days}$
Method:	Soil cores taken from two ecosystems were collected and placed in a climate controlled "plant metabolism box". Ecosystem Section I consisted of a heavy clay-like soil. Ecosystem Section II consisted of loose, sandy soil. Radiolabeled LAS (a defined mixture) absorbed to digested sludge was incorporated into the soils, after which the soils were planted with either grass, bush beans and radishes (Section I) or potatoes (Section II). The test systems were maintained under a defined standard climate (i.e., an average day in June in Northern Germany) for the vegetative period (76 and 106 days, respectively for Sections I and II). At the end of the growing season samples were collected from plants and soil and subjected to radioanalysis.
GLP:	Yes [] No [] ? [X]
Test Substance:LAS.	The authors state that they tested a defined mixture of LAS, but do not report the composition in this paper.
Remarks:	Correponding to Ecosystem Sections I and II, 63.6% and 72.3% of initial radioactivity went to the atmosphere (primarily as CO_2), 26.8% and 18.3% were detected in soil cores, 6.6% and 5.9% were present in biomass, and 0.99% and 1.4% leached out with percolated water. The study shows that LAS adsorbed to digested sludge is relatively rapidly converted to CO_2 and, to a lesser extent, polar organic secondary products

in the upper soil layers. LAS and the secondary products are strongly adsorbed to the topsoil. LAS introduced into the topsoil by repeated application of sludge did not accumulate in the soil. Growth of crops is not impaired; the use of LAS-containing sludge had no adverse effect on the biomass yield (crop yield) under regulated use conditions. Figge, K. and Schoberl, P. 1989. LAS and the application of sewage Reference: sludge in agriculture. Tenside Surf. Det. 26:122-128. 2 Valid with restrictions Reliability: (b) Type : Field trial []; Laboratory [X]; Other [] Radiolabel: Yes [X] No [] ? [] Concentration: 0.05 mg/kgProbably room temperature Soil temperature: Soil humidity: 80% of water holding capacity Soil classification: DIN19863 []; NF X31-107 []; USDA []; Other [X] mainly U.S. Soil Conservation Service soil type designation, by Howard Laboratories, Davton. Ohio 1.4 - 50% Organic Carbon: 4.9 - 8.4 Soil pH: Cation exchange 0.15 meg/100 g soil dry weight capacity: Activity in dpm/h/gdw soil varied from 11,327 to 51,683 Microbial biomass: Dissipation time: DT_{50} : 1.1 - 3.7 days Method: other: described in reference GLP: Yes [] No [] ? [X] C₁₃ LAS (CAS #26248-24-8); activity 98% Test substance: Half-lives ranged from 1.1 to 3.7 days (mineralization). First order Remarks: dissipation rate constants ranged from 0.14 - 0.63/day. Mineralization occurred without a lag-period in every soil tested. Cycles of wetting and drying in the lab prior to testing resulted in more rapid and extensive mineralization. Community microbial activity did not correlate with rate or extent of mineralization. Microbial communities have indigenous ability to degrade low LAS concentrations, the ability is present in a wide array of soil types from various locations. 1. Soil Alpine, sand, pH 5.5, CEC 0.15, TOC 50 (mg/g) 2. Soil Bonnell, sandy loam, pH 8.4, CEC 29, TOC 31.6 3. Soil Brashear, silt loam, pH 7.7, CEC 37, TOC 24.9 4. Soil Eden, silt loam, pH 7.4, CEC 33, TOC 45.1 5. Soil Eden, loamy sand, pH 6.1, CEC 41, TOC 19.6 6. FL soil, sand, pH 4.9, CEC 6.3, TOC 13.8 7. GA soil, loamy sand, pH 4.9, CEC 15.5, TOC 1.4 8. Soil Huntington, loam, pH 7.3, CEC 24, TOC 20.1 9. Soil Lakin, loam, pH 6.5, CEC 24, TOC 34.6 10. Soil Pate, silt loam, pH 7.7, CEC 46, TOC 48.0. Reference: Knaebel, D.B., Federle, T.W. and Vestal, J.R. 1990. Mineralisation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in 11 contrasting soils. Envir. Toxicol. Chem. 9:981-988. Reliability: 2 Valid with restrictions (c) Type : Field trial [X]; Laboratory []; Other []

Radiolabel:	Yes [] No [X] ? []
Dissipation time:	DT_{50} : 7 - 22 days
Results:	In fields not recently spread with sludge, the concentrations of LAS found in the sludge amended soil were generally less than 1 mg/kg. This represents an estimated loss of LAS from soil of >98%. In fields recently
	spread, the concentrations in soil are in the range of <0.2 to 20 mg/kg, representing losses of LAS between 70 and 99% of the estimated total
	an adequate safety margin exists between the concentrations of LAS in aludge emended sails and these likely to effect the growth of eron plonts
Method:	The disappearance of LAS from sludge-amended soils was investigated
	from 51 fields on 24 farms in the Thames Water Authority, U.K. Annual sludge spreading averaged 6 ton/ha. Application of sludge was made by subsurface injection, surface spreading onto arable land with or without
	ploughing, or surface spreading onto pasture land. Regular sampling was conducted for up to 122 days. LAS concentrations in the soil were analyzed with HPLC.
GLP	Yes [] No [] ? [X]
Test substance:	Commercial LAS as present in primary sludge or anaerobically digested
Domontra	sludge from WWTPs in the United Kingdom.
Kemarks.	tests (with 14-C-evolution), indicating that the degradation of LAS does not
	lead to the formation of significant levels of break-down intermediates in soil.
	The homologue distribution of LAS in soil suggests that removal
Reference:	1) Holt, M.S., Matthijs, E. and Waters, J. 1989. The concentrations and
	fate of linear alkylbenzene sulphonate in sludge amended soils. Wat. Res. 23:749-759.
	2) Waters, J., Holt, M.S., Matthijs, E. 1989. Fate of LAS in sludge amended soils. Tenside Surfactants Detergents 26(2):129-135.
Reliability:	2 Valid with restrictions
(d)	
Type:	Laboratory
Radiolabel:	Yes [] No [X] ? []
Concentration:	8 to 488 mg/kg
Soil Composition:	Coarse sand 67%, fine sand 16%, silt 8.6%, clay 6.2% and humus 2.7%
Method:	LAS mixed with sewage sludge was applied to sandy agricultural soil and
	incubated for up to 8 weeks. Various microbial soil parameters were measured (see Section 4.4). LAS was quantified after methanol extraction using HPLC.
GLP:	Yes [] No [] ? [X]
Test Substance:C ₁₀₋₁₃ I	AS obtained as an aqueous sodium salt solution with a LAS content of
	16.1% (w/w), NA-LAS average molecular weight = 342 g/mol, distribution: C_{10} 14%, C_{11} 34%, C_{12} 31%, and C_{13} 21%.
Results:	For nominal concentrations of 8 to 62 mg/kg, the depletion of LAS after 2 weeks was more than 73%. At 488 mg/kg, only 15% depletion occurred.
	It is possible that this high LAS level may have inhibited microbial activity or caused a prolonged log phase to occur
Reference:	Elsgaard, L. Petersen, S.O. and Debosz, K. 2001b. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 2.

	Effects on soil microbiology as influenced by sewage sludge and incubation time. Environmental Toxicology and Chemistry. 20:1664-1672.		
Reliability:	2 Valid with restrictions		
(e) Type :	Field trial [X]: I aboratory [X]: Other [1]		
Type . Radiolabel:	V_{es} [] No [Y] 2 []		
Soil Content:	Clav 1.8 - 4% Silt 7.6 - 18.5 % Sand 77.1 - 95.5%		
Organic Carbon ⁻	Ranged from $0.9 - 1.79\%$		
Soil pH:	5.2 - 6.8		
Dissipation time:	DT ₅₀ : 3 days (lysimeters) DT ₅₀ : 7 days (field trials)		
Method:	Sewage sludge containing LAS was added to four cultivated sandy soils with low amounts of organic matter in field trials and lysimeter studies. The field trial lasted one year. For the lysimeter studies, undisturbed soil columns were taken from the corresponding field sites.		
GLP: Test substance:	Yes [] No [] ? [X] Marlon A350 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = 11 (, activity 50%)		
Remarks: Reference:	= 11.6; activity: 50% LAS are mobile in all four soils tested. They were detected down to a depth of 30-40 cm after being applied at the surface. After one week, a concentration of 500 mg/kg was measured in the 0-5 cm layer, which corresponds to 23% of the the total LAS. In the 5-10 cm layer, the concentration was measured at 9.5 mg/kg (approximately 4%). Very little reached the 30-40 cm layer, although a value significantly above the limit of detection (0.050 mg/kg) was determined. No leaching was observed out of the soil columns and disappearance of LAS in the field trials was attributed to rapid biodegradation in the soil (approximately 99% of the total LAS was biodegraded after 42 days). The half-life was determined to be 3 days. There was a noticeable shift to shorter alkyl chain length homologues in the percolating water (i.e., longer alkyl chains were retained more strongly). These shorter chain length homologues have a lower toxicity. Kuchler, T. and Schnaak, W. 1997. Behaviour of linear alkylbenzene sulfonates (LAS) in sandy soils with low amounts of organic matter. Chemosphere. 35:153-167.		
Reliability:	2 Valid with restrictions		
(f) Type : Radiolabel: Concentration: Soil temperature: Soil humidity: Soil pH: Dissipation time: Method:	Field trial []; Laboratory [X]; Other [] Yes [X] No [] ? [] 250 mg/kg 20°C 35 g water/100g soil dry weight 6.9 - 7.1 DT ₅₀ : 15.8 - 25.7 day Assays were conducted in flow-through microcosms with 15 g (dry wt) of soil adjusted to a 35% moisture level. The test substances were ¹⁴ C ring labelled LAS pure homologues (C ₁₀ , C ₁₁ , C ₁₂ , C ₁₃ , C ₁₄) which were premixed with digester sludge and added to flasks at an initial concentration of 2.5, 25 or 250 mg/kg. ¹⁴ CO ₂ evolution was determined		

GLP: Test substance: Results: Remarks: Reference:	by LSC. The first-order biodegradation rate constant was estimated using non-linear regression techniques. The study was conducted in both sandy loam and loamy sand soil types. Yes [] No [] ? [X] Pure LAS homologues C_{10-14} tested concurrently. The biodegradation rates followed first order kinetics over a wide range of concentrations and chain lengths. Half-lives (mineralization) were reported as C_{10} 21 days; C_{11} 25.7 d; C_{12} 23.1 d; C_{13} 18.2 d; C_{14} 17.8 d in sandy loam; C_{10} 16.5 d and C_{14} 15.8 d in loamy sand. The degradation rate constants were C_{10} 0.033/d; C_{11} 0.027/d, C_{12} 0.030/d, C_{13} 0.038/d, C_{14} 0.039/d in sandy loam; C_{10} 0.042/d C_{14} 0.044/d in loamy sand Mineralisation efficiency averaged 65%. The remaining radiolabel was incorporated into microbial biomass or soil humic material. Half-lives for mineralization of the benzene ring, the rate-limiting step for LAS degradation, ranged from 18 to 26 days. Ward, T.E. and Larson, R.J. 1989. Biodegradation kinetics of LAS in
	sludge-amended agricultural soils. Ecotox. and Environ. Safety 17:119-130.
Reliability:	2 Valid with restrictions
(g)	
Type:	Field trial []; Laboratory []; Other [X] Greenhouse pot
Radiolabel:	Yes [] No [X] ? []
Concentration:	3.7 to 5.1 g/kg dry wt
Soil composition:	Clay 3.7 %, Silt 3.1 %, Fine Sand 19.5 %, Coarse Sand 71.4 %
Organic Carbon:	1.3%
Soil pH:	5.9
Cation exchange capaci	ty: 10.7 cm/kg
Microbial biomass:	not stated
Method:	Sewage sludge was incorporated into a sandy soil to give a range of very low to very high applications (0.4 to 90 mg/ha dry weight). LAS was added as water solutions to this mixture. The soil was transferred to pots and sown with barley, rape, or carrot and allowed to grow for 19, 85, and 30 days, respectively in a greenhouse. Plant-free controls were also established. Samples were collected of the soil and analyzed for total LAS and for individual homologues.
GLP:	Yes [] No [] ? [X]
Test substance:	LAS C_{10-13} , Approximate composition at start of study: C_{10} 3%, C_{11} 22%, C_{12} 40%, C_{13} 35%
Results:	LAS was not taken up by plants and its degradation in soil increased by the presence of crop plants with concentration decreasing in rape from 27 mg/kg (dry soil) to $0.7 - 1.4$ mg/kg (dry soil) at harvesting after 30 days. During degradation, the relative fraction of homologues C_{10} , C_{11} , and C_{12} decreased while C_{12} increased
Reference:	Mortensen, G.K., Elsgaard, H., Ambus, P., Jensen, E.S., and Gron, C. 2001. Influence of plant growth on degradation of linear alkylbenzene sulfonate in sludge-amended soil. J. Environ. Qual. 30:1266-1270.
Reliability:	2 Valid with restrictions
(h)	
Type of Measurement: Medium:	Background []; At contaminated site []; Other [X] Sludge modified soils

Method:	LAS biodegradation and its kineti filling operation using sludges (15% Spain. Once the soil was blended taken in three different zones of the day in order to have a daily co sampling, all samples were frozen a The sampling was conducted on 1 days. LAS determination in sludg HPLC-UV. Degradation was dete measured on the 10 sampling days.	c parameters were st 6) blended with soil (8 with the sludges, gra plot. All samples wer mposite sample. Im nd then sieved to a 2 r 0 different days over ge-modified soils was rmined based on LAS	udied in a land 35%) at a site in b samples were re blended every imediately after nm particle size. a period of 62 carried out by S concentrations
Results:	Average LAS concentrations on the 28.0, 30.2, 35.2, 28.2, 31.6, 35.1, 1 34, 41, 48, 55 and 62, respectively. 62 days was 89.2%. Assuming findays.	ne 10 sampling days 9.3 and 16.7 for days The biodegradation let rst order kinetics, the	were 155, 55.6, 0, 6, 15, 20, 27, vel reached after half-life is 19.3
Remarks:	LAS adsorbed or precipitated on an soil amendment operations by comm table shows a shift in the percent h 62, demonstrating that higher mestronger soil adsorption.	LAS adsorbed or precipitated on anaerobic sludges is biodegraded during soil amendment operations by commonly occurring micro organisms. The table shows a shift in the percent homologue distribution on days 0 and 62, demonstrating that higher molecular weight homologues exhibit stronger soil adsorption.	
	% phenyl homologue	Day 0	Day 62
	C_{10}	3.7	1.2
	C ₁₁	29.4	18.7
	C ₁₂	41.4	48.9
	C ₁₃	25.5	31.2
D.C			11 1 1007

de Ferrer, J., Moreno, A., Vaquero, M.T. and Comellas, L. 1997. Reference: Monitoring of LAS in direct discharge situations. Tenside Surf. Det. 34:278-283.

Reliability: 2 Valid with restrictions

MONITORING DATA (ENVIRONMENTAL) 3.2

(a) Type of Measurements: Medium:	Background []; At contaminated site []; Other [X] Mississippi River Surface Water
Results:	LAS was detected in 16% of the 323 mainstem samples collected during the upstream sampling cruises at concentrations ranging from 0.1 to 10.3 $\mu g/L$ and in 15% of the 39 tributary samples at concentrations ranging
	from 0.1 to 2.8 μ g/L. LAS was detected in 21% of the 38 mainstem composite samples collected during the downstream cruises at concentrations ranging from 0.1 to 2.8 μ g/L and was not detected in any of the 16 tributary samples. LAS was detected in 21% of the 24
	the 16 tributary composite samples. LAS was detected in 85% of the 34 samples collected from the Thebes time-series site at concentrations ranging from 0.4 to $28.2 \mu g/L$.
Remarks:	The 2,800 km reach of the Mississippi River between Minneapolis and New Orleans was examined for the occurrence of LAS. River water was sampled in the summer and fall of 1991 and in the spring of 1992 during upstream and downstream sampling cruises. LAS was analyzed using solid-phase extraction and gas chromatography/mass spectrophotometry.

	The range of average chain length for all dissolved LAS was 10.2-12.0,
Pafaranaa:	with an average of 11.1. The removal of the higher LAS homologues and external isomers indicates that sorption and biodegradation are the principle processes affecting dissolved LAS.
Kelerence:	in the Mississippi River, Environ Sci Technol 30:161-171
Reliability:	2 Valid with restrictions
(b) Turne of Massurementar	Declearound []: At contominated site []: Other [V] Mississinni
Medium.	Sediment
Results:	LAS was present on all bottom sediments (33 locations) at concentrations ranging from 0.01 to 20 mg/kg dry matter. It should be noted that all concentrations were <0.1 mg/kg with the exception of the one extremely high level of 20 mg/kg. The 20 mg/kg sample was found at Pig's Eye Slough, the canal carrying the Minneapolis STP effluent to the the Missinging Piver All concentrations are dry weight.
Remarks:	The 2,800 km reach of the Mississippi River between Minneapolis and New Orleans was examined for the occurrence of LAS. Bottom sediment was sampled in the summer and fall of 1991 and in the spring of 1992. Composite samples were collected at 25 locations during the downstream leg of each cruise. These samples consisted of 5-7 individual sediment samples on each of 2-3 transects in each pool. In addition, grab samples were taken at 8 other locations during the downstream cruise. LAS was analyzed using solid-phase extraction and gas chromotography/mass spectrophotometry. The average chain length for sorbed LAS ranged from 10.7 to 12.5, with an average of 11.5. Sorbed LAS appears to degrade slowly.
Reference:	Tabor, C.F. and Barber, L.B. 1996. Fate of linear alkylbenzene sulfonate in the Mississippi River. Environ. Sci. Technol. 30:161-171.
Reliability:	2 Valid with restrictions
(c)	
Type of Measurements:	Background []: At contaminated site []: Other [X] Rivers in USA
Medium:	Influents, effluents, and surface water
Results:	Average LAS influent concentrations ranged from 4.2-5.7 mg/L among the various types of treatment plants. LAS removal rates averaged 99.3% for activated sludge (n = 15), 98.0-98.5% for lagoon/oxidation ditch (n = 14), 96.2% for rotating biological contact (n = 9) and 77.4% for trickling filters (n = 12). Concentrations of LAS below the mixing zone of wastewater treatment plants were generally below 50 µg/L, even though the samples were collected under low flow (i.e., low dilution) conditions. The mean surface water concentrations ranged from <10 to 330 µg/L, with mean values of 42 to 46 µg/L. The highest concentration was observed in a low (less than 3-fold) dilution irrigation canal below a trickling filter plant. All other values were <180 µg/L, with more than 80% of the sites below 50 µg/L.

Remarks: Surface water samples were collected in rivers at 50 locations in 11 states below wastewater treatment plants. Alkyl chain lengths of LAS averaged 12.0 carbon units in most environmental compartments, with the exception of sludge solids and river sediments, in which an enrichment of longer chain lengths was observed. Since several of the wastewater treatment

Reference: Reliability:	 plants included in this study have dilution factors less than 3, these values include worst case estimates. McAvoy, D.C., Eckhoff, W.S. and Rapaport, R.A. 1993. Fate of linear alkylbenzene sulfonate in the environment. Environ. Toxicol. Chem. 12:977-987. 2 Valid with restrictions
(d) Type of Measurement: Medium: Results:	Background []; At contaminated site []; Other [X] Rivers in U.S.A. sediment Below outfall of trickling filter treatment plant: 190 ± 95 mg/kg dry matter
Remarks: Reference:	> 5 miles downstream: 5.3 ± 4.7 mg/kg dry matter Monitoring studies for LAS in river sediment in Rapid Creek, USA below the outfall of a trickling filter sewage treatment plant. Compiled by Procter & Gamble between 1973 and 1986. Rapaport, R.A. and Eckhoff, W.S. 1990. Monitoring linear alkylbenzene
Reliability:	sulfonate in the environment: 1973-1986. Environ. Toxicol. Chem. 9:1245-1257. 2 Valid with restrictions
Kendolinty.	
(e) T	
Medium:	Sewage treatment influents & effluents: rivers and sediments
Results:	The removal from four activated sludge and five trickling filter wastewater treatment facilities averaged 99.5% & 82.9% for LAS and 99.1% and 97.3% for LAS intermediate, respectively, for the activated sludge and trickling filter facilities
Remarks:	LAS concentrations in receiving waters downstream of four activated sludge treatment plants ranged from 0.002 to 0.081 mg/L. LAS concentrations in receiving waters downstram of five trickling filter treatment plants ranged from 0.004 to 0.094 mg/L. Upstream LAS concentrations ranged from <0.001 to 0.110 mg/L and <0.001 to 0.005 mg/L for the activated sludge and trickling filter treatment plants,
Reference:	respectively. Trehy, M.L., Gledhill, W.E., Mieure, J.P., Adamove, J.E., Nielsen, A.M., Perkins, H.O. and Eckhoff, W.S. 1996. Environmental monitoring for linear alkylbenzene sulfonates, dialkyltetralin sulfonates and their biodegradation intermediates. Environmental Toxicology and Chemistry 15:233-240.
Reliability:	2 Valid with restrictions
(f)	
Type of Measurement:	Background []; At contaminated site []; Other [X] concentrations in sludge from waste water treatment plants
Medium:	sludge
Results:	(A) Conc. In sludge 0.7 and 0.4 g LAS/kg of dry matter (data from 2 plants)
	 (B) Conc. In sludge 0.5 and 0.1 g LAS/kg of dry matter (data from 2 plants) (C) Conc. In sludge 30.2; 12.8; 11.4; 7.0 and 7.5 g LAS/kg of dry matter (from 5 plants)
Remarks:	(A) Plants with aeration/settling system

(B) Plants with activated sludge & aerobic digestion of sludges system

(C) Plants with activated sludge & anaerobic digestion of sludges.

The concentrations in sludge correlate with water hardness. The higher the water hardness, the greater the amount of calcium-precipitated LAS in the sludge. For example, the water hardness that resulted in the 30.2 g/kg value was >500 mg/L as calcium carbonate. This level of hardness is very high and is 2-3 times higher than the more typical range of 200-300 mg/L as calcium carbonate. The amount of LAS physically removed to the sludge during primary settleing versus biodegradaded can be seen in the following table.

Treatment Plant (all from category C)	Physical Removal	LAS Biodegradation	Water Hardness (as mg/L CaCO ₃)
Alicante	35%	68.2%	>500
Sevilla S.E.	30%	75.6%	220
Sevilla N.	27%	87%	315
La China (Madrid)	16%	91%	<100
Viveros (Madrid)	15%	91.2%	<100
Reference: Reliability:	Berna, J.L., de Ferrer, J., Moreno, A., Prats, D., Ruiz Bevia, F. 1989. The fate of LAS in the environment. Tenside Surfactants Detergents 26(2):101-107. 2 Valid with restrictions		
(g) Type of Measurement: Medium:	Background []; At cont UK Final effluent	aminated site []; Other [X]	STP effluent in the
Results.	Final effluent concentration	on of LAS from four tricklin	o filter STPs ranged
results.	from 40 to 430 µg/L (mea	$1000 \pm 1000 \pm 1000 \pm 10000 \pm 10000 \pm 10000 \pm 10000 \pm 100000000$	ig inter 5115 funged
Remarks [.]	Removal from trickling fi	lter STPs averaged 92.9%	
Reference:	Holt, M.S., Daniel, M., Buckland, H. and Fox, K.K. 2000. Monitoring studies in the UK designed for validation of the Geo-Referenced Exposure Assessment Tool for European Rivers (GREAT-ER), 5 th World CESIO Congress. V.2:1358-1369, Firenze, Italy.		
Reliability:	2 Valid with restrictions		
(h) Type of Measurement:	Background []; At co	ntaminated site []; Other	[X] Lambro River
	(Italy)		4 CTD 20
Results:	Mean background LAS c	concentration downstream fr	om the STP was 28
Remarks:	μg/L. A two year water quality Lambro (northern Italy) d to 1998, 40% of the loca into the river. The plants April to September 1997, a month from 19 stations tributaries, and at two S	monitoring program was coluring the period March 1997 I waste water was discharge were undersized activated grab samples were collected along the main channel of th TPs located within the mor	onducted in the river 7 to May 1998. Prior ed untreated directly sludge plants. From approximately once he river, its two main nitoring area. From

grab samples were replaced by 24-hour composite samples (one sample shot every 20 minutes) collected using automatic samplers, twice a month

Reference:	at four sites downstream of the Merone plant, at the STP overflow, and occasionally one site upstream of Merone. Additional studies were also performed in conjunction with the overall monitoring program. Gandolfi, C., Facchi, A., Whelan, M.J., Cassarri, G., Tartari, G. and Marcomini, A. 2000. Validation of the GREAT-ER model in the River Lambro catchment 5 th World CESIO Congress. V 2:1370-1379
Reliability:	2 Valid with restrictions
(i) Type of Measurement: Medium: Results:	Background []; At contaminated site []; Other [X] Tiber River Sewage treatment plant activated sludge and surface water The average LAS concentrations in the Roma Nord activated sludge sewage treatment plant were 4.6 mg/L (influent), 0.068 mg/L (effluent), and 6000 mg/kg dry matter (final sludge), which correspond to an overall 98.5% LAS removal rate in the plant. In the receiving waters of the Tiber
	River LAS was 9.7 μ g/L in the aqueous phase and 1.8 mg/kg dry matter in the sediment. Total daily LAS entering the treatment plant amount to 1150 kg. About 1.5% (17 kg) leave the treatment plant through the final effluent and 234 kg (about 20% of the influent LAS) are removed by the digested sludge.
Remarks:	Samples were collected over several days in June 1993. It is important to note that LAS environmental fingerprints in effluent and surface waters differ from the composition of the commercial material. The relative ratio of the various homologues detected in the aquatic environmental samples is as follows: $C_{10}:C_{11}:C_{12}:C_{13} = 45:30:23:2$ with an average carbon number of 10.8. That is due to the alkyl chain switch to shorter homologues in water as a consequence of both biodegradation in the water phase, which is faster for the higher homologues, and of adsorption into sediments, suspended solids, and the sludge, which is more pronounced for higher homologues. The LAS homologue distribution in sludge is approximately in the mole ratio $C_{10}:C_{11}:C_{12}:C_{13} = 7:24:39:30$ with an average carbon number of 11.9, as a consequence of a preferential adsorption of higher homologues
Reference:	DiCorcia, A., Samperi, R., Belloni, A., Marcomini, A., Zanette, M., Lemr, K. and Cavalli, L. 1994. LAS pilot study at the "Roma-Nord" sewage treatment plant and in the Tiber river. La Rivista Italiana Delle Sostanze Grasse. LXXI:467-475.
Reliability:	2 Valid with restrictions
(j) Type of Measurement:	Background []: At contaminated site []: Other [X] Rivers in five
Madiumu	European Countries
Results:	A very high average LAS total removal of 99.2% (98.5-99.9%) in sewage treatment was found. LAS concentrations in river water below activated sludge treatment plants in five European countries ranged from <2.1 to 47
Method:	As part of a pilot study, LAS monitoring was conducted at five activated sludge sewage treatment plants located in Germany, the UK, the Netherlands, Spain and Italy. Samples were collected over 7-day monitoring periods. Daily flow-related composites of raw sewage and treated effluent were taken. On at least one day, samples were taken at 2
or 3 hour intervals to assess diurnal variations in LAS concentration. Sludge samples were also taken. Samples of river water and sediment were also collected from sites above and below the sewage effluent outfalls. Samples consisted of either grab or composite samples, as well as interval sampling to determine diurnal changes in LAS concentration. Sediment samples were collected from the top layer (0-5 cm) of the river bed in four of 5 pilot study locations. LAS determinations were made with validated trace enrichment-HPLC procedures employing a specific fluorescence detector.	
--	
LAS concentrations in raw sewage ranged from 4.0 to 15.1 mg/L. Only low concentrations of LAS were discharged to the receiving waters. The range of mean effluent concentrations was 0.009-0.140 mg/L. The mean concentration of LAS in river sediments below effluent discharges ranged from 0.49-5.3 µg/g. Below treatment plants, LAS levels in sediments were very similar (and sometimes lower) than levels above treatment plants. Based on these observations, the authors suggest that LAS is bioeliminated in river sediments. LAS levels in digested sludge from Spain and Italy ranged from 6.0 to 9.4 g/kg dry weight. Differences in the main operating characteristics at the five sites (e.g., treatment type, plant size, sludge retention time, hydraulic retention time, temperature) were not found to greatly influence the removal of LAS.	
Waters, J. and Feijtel, T.C.J. 1995. AIS/CESIO Environmental Surfactant monitoring programme: Outcome of five national pilot studies on linear allul henzene sulphenete (LAS). Chamagnhare 20:1020-1056	
2 Valid with restrictions	
Background []; At contaminated site []; Other [X] Red Beck, a small Yorkshire stream	
Sewage treatment effluents	
The results show an LAS concentration, corrected for dilution, of 0.07 mg/L (uncorrected 0.033 mg/L) at Sunny Bank (the furthest downstream station, approximately 4.8 km from the out fall) after 6 hours of travel time. The calculated half-life was in the 2-3 h range, indicating kinetics faster than that of laboratory biodegradation studies in river waters.	
LAS and water quality parameters have been measured at seven sites downstream of the effluent discharge point of a trickling filter treatment plant (Shibden Head Sewage Treatment Works, Yorkshire, UK). This study was carried out specifically to measure in-stream removal kinetics of LAS. Time of travel was measured by detection of a fluorescent dye (Rhodamine WT) added to the effluent. Increase in flow as the river proceeds through the catchment was determined by flow measurements and boron dilution rate. Nine sampling stations were selected. The study began with the injection of Rhodamine WT dye to the final effluent. The concentration profile of the dye pulse was established from plots of fluorescence intensity versus time, which allowed the measurement of LAS concentration in the same stream volumes of water as the flow moved downstream. LAS concentrations were corrected for increased flow of the stream (and dilution of LAS) by inputs from side streams. Water samples were collected using automatic samples (time	

	used as a reference substance for measuring the increasing stream flow
	as boron is highly soluble in water and non-degradable. LAS was
	analyzed as per the method of Holt et al. 1995. Briefly, LAS was
	extracted from the samples by solid phase extraction on C18 cartridges,
	eluted with methanol, evaporated under nitrogen to dryness,
	reconstituted in 1 mL methanol, and analyzed by reverse phase HPLC
D 1	on a C18 column with fluorescence detection.
Remarks:	The study indicates that an LAS removal half-life of 2-3 hours will be
	appropriate for small shallow streams, which have an LAS concentration
	between 50-250 μ g/L, for use in the GREAT-ER model calibration
Deference:	Exercise. Ease K Holt M Danial M Buckland H and Custmar I 2000.
Kelelellee.	Peroval of linear alkylbenzene sulfonate from a small Vorkshire stream
	Contribution to GREAT-ER project #7 Sci Total Environ 251:265-275
Reliability.	2 Valid with restrictions
Rendonity.	
(1)	
Type of Measurement:	Background []; At contaminated site []; Other [X] Dutch surface
Type of Measurement:	Background []; At contaminated site []; Other [X] Dutch surface water
Type of Measurement: Medium:	Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone.
Type of Measurement: Medium: Results:	 Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the
Type of Measurement: Medium: Results:	Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the mixing zone was 14.2 μg/L, with a range mostly between <2 to 47 μg/L.
Type of Measurement: Medium: Results: Remarks:	 Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the mixing zone was 14.2 μg/L, with a range mostly between <2 to 47 μg/L. Mean derived from a total of 23 records taken from the joint NVZ/VROM
Type of Measurement: Medium: Results: Remarks:	Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the mixing zone was 14.2 μ g/L, with a range mostly between <2 to 47 μ g/L. Mean derived from a total of 23 records taken from the joint NVZ/VROM monitoring program of sewage treatment plants around the Netherlands.
Type of Measurement: Medium: Results: Remarks:	Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the mixing zone was 14.2 μ g/L, with a range mostly between <2 to 47 μ g/L. Mean derived from a total of 23 records taken from the joint NVZ/VROM monitoring program of sewage treatment plants around the Netherlands. Samples were collected during three consecutive days from seven
Type of Measurement: Medium: Results: Remarks:	Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the mixing zone was 14.2 μ g/L, with a range mostly between <2 to 47 μ g/L. Mean derived from a total of 23 records taken from the joint NVZ/VROM monitoring program of sewage treatment plants around the Netherlands. Samples were collected during three consecutive days from seven different sewage treatment plants.
Type of Measurement: Medium: Results: Remarks: Reference:	 Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the mixing zone was 14.2 μg/L, with a range mostly between <2 to 47 μg/L. Mean derived from a total of 23 records taken from the joint NVZ/VROM monitoring program of sewage treatment plants around the Netherlands. Samples were collected during three consecutive days from seven different sewage treatment plants. 1) Feijtel, T.C.J. and van de Plassche, E.J. 1995. Environmental Risk
Type of Measurement: Medium: Results: Remarks: Reference:	 Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the mixing zone was 14.2 μg/L, with a range mostly between <2 to 47 μg/L. Mean derived from a total of 23 records taken from the joint NVZ/VROM monitoring program of sewage treatment plants around the Netherlands. Samples were collected during three consecutive days from seven different sewage treatment plants. 1) Feijtel, T.C.J. and van de Plassche, E.J. 1995. Environmental Risk Characterization of 4 Major Surfactants used in the Netherlands. RIVM Benerat Na (70101 025)
Type of Measurement: Medium: Results: Remarks: Reference:	 Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the mixing zone was 14.2 μg/L, with a range mostly between <2 to 47 μg/L. Mean derived from a total of 23 records taken from the joint NVZ/VROM monitoring program of sewage treatment plants around the Netherlands. Samples were collected during three consecutive days from seven different sewage treatment plants. 1) Feijtel, T.C.J. and van de Plassche, E.J. 1995. Environmental Risk Characterization of 4 Major Surfactants used in the Netherlands. RIVM Report No. 679101 025. 2) Matthija E Halt MS Kiawist A and Piia C P 1000
Type of Measurement: Medium: Results: Remarks: Reference:	 Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the mixing zone was 14.2 μg/L, with a range mostly between <2 to 47 μg/L. Mean derived from a total of 23 records taken from the joint NVZ/VROM monitoring program of sewage treatment plants around the Netherlands. Samples were collected during three consecutive days from seven different sewage treatment plants. 1) Feijtel, T.C.J. and van de Plassche, E.J. 1995. Environmental Risk Characterization of 4 Major Surfactants used in the Netherlands. RIVM Report No. 679101 025. 2) Matthijs, E., Holt, M.S., Kiewist, A and Rijs, G.B. 1999. Environmental monitoring for LAS. AE AES AS and scent.
Type of Measurement: Medium: Results: Remarks: Reference:	 Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the mixing zone was 14.2 μg/L, with a range mostly between <2 to 47 μg/L. Mean derived from a total of 23 records taken from the joint NVZ/VROM monitoring program of sewage treatment plants around the Netherlands. Samples were collected during three consecutive days from seven different sewage treatment plants. 1) Feijtel, T.C.J. and van de Plassche, E.J. 1995. Environmental Risk Characterization of 4 Major Surfactants used in the Netherlands. RIVM Report No. 679101 025. 2) Matthijs, E., Holt, M.S., Kiewist, A and Rijs, G.B. 1999. Environmental monitoring for LAS, AE, AES, AS, and soap. Environ. Toxicol Chem. 18:2634-2644
Type of Measurement: Medium: Results: Remarks: Reference: Reliability:	 Background []; At contaminated site []; Other [X] Dutch surface water Surface water downstream of activated sludge STP outfalls just after the mixing zone. The mean LAS concentration in surface waters just downstream of the mixing zone was 14.2 μg/L, with a range mostly between <2 to 47 μg/L. Mean derived from a total of 23 records taken from the joint NVZ/VROM monitoring program of sewage treatment plants around the Netherlands. Samples were collected during three consecutive days from seven different sewage treatment plants. 1) Feijtel, T.C.J. and van de Plassche, E.J. 1995. Environmental Risk Characterization of 4 Major Surfactants used in the Netherlands. RIVM Report No. 679101 025. 2) Matthijs, E., Holt, M.S., Kiewist, A and Rijs, G.B. 1999. Environmental monitoring for LAS, AE, AES, AS, and soap. Environ. Toxicol. Chem. 18:2634-2644. 2 Valid with restrictions

(m)	
Type of Measurement:	Background []; At contaminated site []; Other [X] Rivers in Japan
Medium:	Surface water
Results:	Measured LAS concentrations from March 1998 to September 2002 ranged from below the detection limit (< 4 μ g/L) to 81 μ g/L. The 95 th percentile values ranged from below detection (< 4 μ g/L) to 48.7 μ g/L. The following table shows the maximum, median and 95 th percentile LAS concentrations along with the number of samples in which LAS was detected.

	#	LAS Concentration (µg/L)		
Site #	Data Points	Maximum	Median	95 th Percentile
1	18	7.0	<4.0	7.0
2	2	12.0	8.0	11.6

3	18	24.0	9.5	16.4
4	18	50.0	6.0	44.1
5	18	81.0	9.5	48.7
6	2	<4.0	<4.0	<4.0
7	14	17.0	5.0	13.8
All Sites	90	81.0	6.0	33.1

Methods:

River water samples were collected from seven sites on four urban rivers in Japan (Tamagawa, Edogawa, Arakawa, and Yodogawa Rivers), as summarized in the following table.

Site #	River Name	Site Name	Water Area Categ ory	Description	BOD in 1999 Median/75 th % ile (mg/L)
1	Tamagawa	Hamura-seki	A	Upstream. Drinking water intake site.	0.5/0.5
2	Tamagawa	Harabashi	В	Midstream. Just below municipal wastewater treatment plant effluent discharge	2.1/2.3
3	Tamagawa	Denen-chofu-seki	В	Midstream	1.6/1.7
4	Edogawa	Kanamachi	Α	Downstream. Drinking water intake site	1.4/1.7
5	Arakawa	Chisui-bashi	В	Midstream	4.6/5.5
6	Arakawa	Sasame-bashi	С	Downstream. Just below municipal wastewater treatment plant effluent discharge	2.5/3.1
7	Yodogawa	Hirakata-oohashi	В	Midstream. Drinking water intake site	1.6/1.9

	Grab samples were collected four times a year (summer, autumn, winter, and spring) at each sampling location. River water was characterized at each sampling occasion for BOD, TOC, SS, pH, Cl, NH ₄ and MBAS. LAS was complexed with MBAS, extracted, passed through a cation-exchange column, and the concentration of C_{10-13} LAS measured using HPLC. Populations in the catchments of the four rivers are relatively dense and municipal wastewater treatment coverage rates are middle to high (i.e., from 60-70% to over 90% coverage). The seven sites cover upstream (Site 1), midstream (2, 3, 5, 7), and downstream (4, 6), and water area categories ranging from A to C. Two of the sites (2, 6) are just below
	municipal wastewater treatment plant effluent discharges. Three sites (1,
	4, 7) are near drinking water intake sites.
Reference:	Nishiyama, N., Yamamoto, A., and Takei, T. 2003. 37 th Annual meeting of the Japan Society of Water Environment, Kumamoto, Japan.
	Japan Soap and Detergent Association (JSDA). Annual reports of environmental issues (Years 1999, 2000, 2001, 2002).
Reliability:	2 Valid with restrictions
(n)	

(n)	
Type of Measurement:	Background []; At contaminated site []; Other [X] Europe STP sludge
Medium:	Anaerobic sludge
Results:	Typical values are between 3.4 and 9.4 g/kg dry matter, with a mean of 5.6 g/kg.
Remarks:	Mean based on a total of 16 records. The LAS homologue distribution in sludge is approximately in the mole ratio $C_{10}:C_{11}:C_{12}:C_{13} = 7:24:39:30$,

Reference [.]	with an average carbon number of 11.9, as a consequence of a preferential adsorption of higher homologues. The possible differences of LAS concentration is wet sludge, freshly produced at a STP from that of dry sludge, aged and dried before its use in agriculture, should be taken into account. It was found (Carlsen et al. 2002) that the LAS concentration in the bulk dry sludge could drop up to 74% compared to that of the wet sludge. Carlsen et al. (2002) also found that the average LAS concentration in soil core samples taken in a cultivated field spread with medium amounts of sludge was 1.12 mg/kg in the 0-10 cm depth. Lower LAS concentrations were recorded at depths from 10-50 cm.
	 alkylbenzene sulfonates (LAS) in the terrestrial environment. The Science of the Total Environment. 290:225-230. Feijtel, T.C.J., Matthijs, E., Rottiers, A., Rijs, G.B.J., Kiewiet, A. and de Nijs, A. 1995. AIS/CESIO environmental surfactant monitoring program. Part 1: LAS monitoring study in "de Meer" STP and receiving river "Leidsche Rijn". Chemosphere. 30:1053-1066. Holt, M.S., Water, J., Comber, M.H.I., Armitage, R., Morris, G. and Nebery, C. 1995. AIS/CESIO environmental surfactant monitoring programme. SDIA sewage treatment pilot study on LAS. Wat. Res. 29:2063-2070. Sanchez Leal, J., Garcia, M.T., Tomas, R., de Ferrer, J. and Bengoechea, C. 1994. Linear alkylbenzene sulfonate removal. Tenside
Reliability:	Surf. Det. 31:253-256. 2 Valid with restrictions
(0)	
Type of Measurement:	Background []; At contaminated site []; Other [X] concentrations in sludge-amended agricultural soils
Medium:	soil
Method:	An extensive monitoring study was performed on sludge-amended soils in the Thames Water Authority area, UK, by a Soap and Detergent Industry Association task force. A total of 51 fields from 24 farms were used, with sites representing a range of soil types, frequency and level of sludge applications, and agricultural uses. A total of 35 of the fields were pasture lands and 16 fields were arable land. The majority of fields were surface spread with primary and anaerobically digested sludge containing approximately 4.5% dry solids.
Results.	prior to 1987 (the study year) were monitored to establish the levels of LAS in sludge amended soils. Thirty five (83%) of the samples contained LAS levels below 1 mg/kg soil (mean = 0.7 mg/kg). The seven other sites contained LAS levels between 1.1 and 2.5 mg/kg soil. Nine sites received sludge applications in January to May 1987. Sampling was conducted in May 1987 and resulted in LAS concentrations ranging from <0.2 to 19.8 mg/kg. The highest LAS concentrations in soil (19.8, 10.6, 7.8, and 4.5 mg/kg) were recorded within days after the sludge application.
Remarks:	Soil concentrations dropped significantly in less than two months (e.g., the 19.8 mg/kg value dropped to 2.1 mg/kg in 55 days). The average chain
Reference:	length of the LAS found in soil samples was C _{11.7} . Waters, J., Holt, M.S., Matthijs, E. 1989. Fate of LAS in sludge amended soils. Tenside Surfactants Detergents 26(2):129-135
	sons. Tenside Surfactunts Detergents 20(2):129 135.

Reliability:	2 Valid with restrictions
(p)	
Type of Measurement:	Background []; At contaminated site []; Other [X] concentrations in
	sludge-amended agricultural soils
Medium:	sludge and soil
Method:	This paper collects the literature on the concentrations of LAS in sludge- amended soil resulting from the use of sewage sludge applications on agricultrual fields. Data were compiled from a variety of original reference sources.
Results:	The concentrations of LAS in sludge are shown in the following table:

Sludge Description	Concentration (mg/kg dw)	Reference *
Anaerobic	2,900 - 11,900	McEvoy and Giger 1985
Anaerobic	4,660 - 1,540	Rapaport et al. 1987
Aerobic	182 - 432	Matthijs and De Henau 1987
Anaerobic	1,330 - 9,930	Matthijs and De Henau 1987
Anaerobic	5,500	Marcomini 1988
Aerobic	100 - 500	Berna et al. 1989
Anaerobic	7,000 - 30,200	Berna et al. 1989
Aerobic	152 ± 120	McAvoy et al. 1993
Anaerobic	$10,460 \pm 5,170$	McAvoy et al. 1993
Anaerobic	11,500 - 14,000	Cavalli et al. 1993
Anaerobic	12,100 - 17,800	Prats et al. 1993
Anaerobic	$6,000 \pm 1,200$	Di Corcia et al. 1994
Primary	3,400 - 5,930	Feijtel et al. 1995
Aerobic	205	Feijtel et al. 1995
Aerobic	11 - <500	VKI 1997
Anaerobic	1,000 - 16,100	VKI 1997

* See article for full citations.

The concentrations of LAS in sludge-amended soil are shown in the following table.

Initial Concentration (mg/kg dw)	Typical Concentration * (mg/kg dw)	Reference**
16, 27		Figge et al. 1989
45	5	Marcomini et al. 1989
16,53	0.3	Berna et al. 1989
Max. 66	0-20	Waters et al. 1989
Max. 145	0-8	Holt et al. 1992
Max. 250	1-7	Ward et al. 1989
22.4	0.7, 3.1	Prats et al. 1993

* Typical values after a test period

** See article for full citations

Remarks:The range of LAS concentrations in sludge rarely exceeds 30,000 mg/kg
dw. The range of LAS concentrations in sludge-amended soil also is low.Reference:Cavalli, L., and Valtorta, L. Surfactants in sludge-amended soil. Tenside
Surfactants Detergents 36:22-28.Reliability:2 Valid with restrictions

(q)

Type of Measurement:	Background []; At contaminated site []; Other [X] Coastal waters and
	harbor sediments with municipal and industrial discharge
Medium:	marine sediments
Test Substance: The cher	mical standard was a commercial LAS with a low dialkyltetralinsulfonates content ($<0.5\%$) in a single standard mixture with proportional composition of the homologues C ₁₀ 3.9%, C ₁₁ 37.4%, C ₁₂ 35.4% and C ₁₃
	23.1% (Petroquimica Espanola S.A.)
Method:	Sediment samples were taken from 23 sites along the Mediterranean coast of Spain and from three sites on the Atlantic coast. Water samples were taken at 14 sites on the Mediterranean coast. Samples underwent standard sample preparation and were analyzed using HPLC/MS. Samples were analyzed for individual LAS homologues (Cua Cua Cua) and other
	nonionic surfactants and their degradation products.
Results:	In seawater the concentrations of LAS across all the samples ranged from 2.4 to 92 μ g/L and in marine sediment the concentrations of total LAS ranged from 0.1 to 238 mg/kg dry weight. Concentrations were higher in the sediments than in the water column, with the highest concentrations found in sediments collected in the proximity to the outflow of untreated urban wastewaters. The average carbon chain length of LAS ranged from 10.6 to 11.6 in water and 12.0 to 12.8 in sediment
Remarks:	High concentrations of nonionic surfactants and their degradation products have been shown to accumulate in sediments, which seem to act as a sink for LAS in studied areas. The relative concentrations of the lower homologues C_{10} and C_{11} LAS in water samples are higher than the typical laundry detergent, mainly due to the partial removal and/or enrichment of these species during transportation of the wastewater in the sewage system because of the higher degradation and adsorption tendency of the longer alkyl chain homologues. The longer chain lengths are preferentially sorbed to particulate matter because of their high lipophilicity, thus explaining the increase in relative concentration of C_{12} and C_{13} homologues in the sediment samples. When interpreting this study, it is important to note that hot spots such as described are not representative of European coastal sediments. Little or no macrofauna lives in such sediment, probably due to multistressor pressure.
Reference:	Petrovic, M., Fernandez-Alba, A.R., Borrull, F., Marce, R.M., Mazo, E.G., and Barcelo, D. 2002. Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environmental Toxicology and Chemistry 21:37-46

Type of Measurement:Background []; At contaminated site []; Other [X] Coastal sedimentsIn Bay of Cadiz, SpainMedium:Estuarine and marine sedimentsMethod:Sediment samples were collected from seven stations (5 in the Bay of
Cadiz, 2 in the Barbate River), representing a range of low, moderate, and
high levels of chemical contamination. Samples were collected using a
0.025m² Van Veen grab sampler during winter and summer in the same
year. LAS was measured using specific HPLC analytical techniques.
Fourteen heavy metal contaminants were also measured. Concurrent

	sediment toxicity tests were also conducted in which the rate of burial for clams (Ruditipes philippinarum) was measured over 48 hours and the survival of amphipods (Microdeutopus gryllotalpa) was measured over 10 days of exposure to whole sediments.
Results:	LAS concentrations in the sediment ranged from 1.2-26.7 mg/kg dw in the summer and 1.2-62.1 mg/kg dw in the winter. Five of the 7 stations had LAS concentrations < 2.6 mg/kg dw.
Remarks:	No mortality was observed in the clam toxicity studies. Clam burial was fastest in the uncontaminated sites (e.g., $ET_{50} = 0.01-0.76$ hours in winter), intermediate in moderately polluted sites (e.g., $ET_{50} = 0.92-1.29$ hours in winter), and slowest in highly polluted sites (e.g., $ET_{50} > 48$ hours in winter). The highest survival in the amphipod studies was in the uncontaminated site (85% survival) and the lowest survival was in the highly polluted site (16% survival). LAS is the only organic component of untreated sewage discharges considered, and sediment contaminants also included high levels of Ag and Pb.
Reference:	DelValls, T.A., Forja, J.M. and Gomez-Parra, A. 2002. Seasonality of contamination, toxicity, and quality values in sediments from littoral ecosystems in the Gulf of Cadiz (SW Spain). Chemosphere. 46:1033-1043.
Reliability:	2 Valid with restrictions
(s)	
Type of Measurement:	Background []; At contaminated site []; Other[X]; Coastal sediments in Denmark
Medium:	marine sediments
Method:	Two core samples of 1 meter length were taken in the Baltic Sea, one in the inner Stockholm archipelago, and one north of Gotland, in the autumn of 2000. Sediment samples were also taken from five locations in Haderslev Fiord on December 20, 2000. On April 3, 2001, samples were taken from five locations each in Vejle and Kolding Fiords. All samples were analyzed for total alkylbenzene sulfonates (LAS), and if possible, branched (branched dodecylbenzene sulfonates (BDS)) and linear alkylbenzene sulfonates separately. In addition, soap and volatile solids were analyzed separately.
Results:	Danish marine sediments are not generally contaminated with LAS. The levels of health sediments are near or below detection limits. The concentration of LAS in soft sediments of the Baltic Sea along the Swedish coast is <0.5-1 mg/kg dry wt. Soap can be detected in high concentrations (1,000-2,000 mg/kg dry wt.) in sediments, where LAS could not be detected (<0.05 mg/kg dry wt.). Sediments from a Danish shipping port (Haderslev Fiord), as previously reported by Danish EPA, were found to contain relatively high concentrations of LAS (2-20 mg/kg dry wt.) as well as extremely high soap concentrations (3,000-10,000 mg/kg dry wt.) and many other pollutants.
Remarks:	The authors conclude that the environmental problem in Haderslev Fiord is not LAS or soap, but the fact that the whole sediment consists of stinking sludge formed by past discharges of untreated sewage and today's overflow of sewage from emergency spillways in the municipal sewage system. The presence of BDS in the sediments demonstrates that this a historical problem.

Reference:	Folke, J., Cassani Willumsen, B. dodecylbenzene su the Baltic proper ar	, G., de Ferrer, J., 2003. Linear alkyll lfonates and soap and d Little Belt Tenside	Lopez, I., Karlsso benzene sulphona alyzed in marine s	on, M.O., and tes, branched ediments from
Reliability:	2 Valid with restric	ctions	Sull. Det. 40.17-2-	ŧ.
(t) Type of Measurement:	Background []; A receiving untreate	t contaminated site [d urban effluents]; Other [X] Coas	stal sediments
Medium:	marine sediments			
Test Substance:LAS C ₁	0-14 (sum of all home	ologues)		
Method: Results:	There were three coastal sediments effluents; 2) detern interstitial water; a column at depths study was carried of in the southwest of where LAS levels cores of sediment thick sections an analysis, and clean both LAS concent carboxylic acids (S The vertical profile waters showed a sh (6-13 carbon atoms water becomes and weight) for total LA	objectives to the stud in areas receiving nine LAS distribution nd 3) determine the p below the aerobic ox out in a salt marsh in the Spain. Samples were are very high due to were collected at eace d analyzed using s up techniques. Analy rations and concentration arp reduction with dep s) was greatest at 10-1 oxic. Surface (0-8 cm AS and SPCs are show	dy: 1) determine 1 discharges of ur between the solid oresence of SPCs in idation/reduction i he south part of the e taken at three stat o untreated urban of ch station, frozen, standard HPLC/FI yess were conducted ations of long-chait AS biodegradation. ns in the sediment pth, whereas the lo 14 cm depth where m) sediment concern n below.	LAS levels in phase and the phase and the n the sediment nterface. The e Bay of Cadiz ions in an area effluents. Ten cut into 1 cm preparation, d to determine in sulfophenyl and interstitial ng chain SPCs the interstitial entrations (dry
	Station	Location	Total LAS (mg/kg)	Total SPCs
	В	Close to discharge point	138.6	924.6
	С	Distant, strong tidal current	16.4	224.2
		Distant, weaker	0.0	70.(

The partition coefficients between the solid phase of the sediment versus the interstitial water are very different for LAS and for its degradation intermediates. For LAS, the organic carbon-based partition coefficient values were between 2.4 x 10^3 and 6.6 x 10^5 L/kg for the homologues C₁₀ and C_{13} , respectively. For the longer chain SPCs, the partition coefficients are several orders of magnitude lower as a consequence as their lower hydrophobicity.

tidal current

0.8

70.6

Remarks: The LAS concentration in the upper sediment layer (0-8 cm) decreased with distance from the point of effluent discharge. The concentration of LAS in the sediment was up to 1000 times greater than that in the interstitial water. For SPC, the concentrations in the sediment and interstitial water were similar to each other.

А

Reference: Reliability:	Leon, V.M., Gonzalez-Mazo, E., Pajares, J.M.F., and Gomez-Parra, A. 2001. Vertical distribution profiles of linear alkylbenzene sulfonates and their long-chain intermediate degradation products in coastal marine sediments. Environmental Toxicology and Chemistry 20:2171-2178. 2 Valid with restrictions
(u)	
Type of Measurement:	Background []; At contaminated site []; Other [X] Predicted marine water concentrations in the North Sea
Medium:	Estuarine and marine surface water
Method:	LAS environmental concentrations were predicted from per capita LAS use (2.5 g LAS/cap/day in Western Europe), water treatment statistics, and population estimates for Western Europe.
Results:	The predicted LAS concentration range in the estuaries around the North Sea are 0.9-9 μ g/L, which is in agreement with field monitoring data (1-9 μ g/L) from the matter Scheltz arters
Remarks:	A risk assessment of LAS in marine sediments was initiated in 2002 and is expected to be available in 2004
Reference:	Temara, A., Carr, G., Webb, S., Versteeg, D. and Feijtel, T. 2001. Marine risk assessment: linear alkylbenzene sulfonate (LAS) in the North Sea.
Reliability:	Marine Poll. Bulletin. 42:635-642. 2 Valid with restrictions
(v)	
Type of Measurement:	Background []; At contaminated site []; Other [X] Coastal waters and sediments in the Elbe estuary
Medium:	Surface water and marine sediments
Method [.]	Water samples (100-L) were collected from a depth of 5 m at several
	locations in the Elbe estuary of the German Bight of the North Sea. Sediment samples were collected at the same locations. All samples were extracted and analyzed for LAS and other compounds (e.g. nonylphenols) present in detergents.
Results:	The maximum concentration of LAS in surface waters was 0.03 μ g/L and occurred in marinas in the Elbe estuary. Sediment LAS concentration ranged from 39-109 μ g/kg dry weight
Remarks:	The LAS found in marina sediment probably originated from the discharges of municipal wastewater treatment plants.
Reference:	Bester, K., Theobald, N., and Schroeder, H.Fr. 2001. Nonylphenols, nonylphenol-ethoxylates, linear alkylbenzenesulfonates (LAS) and bis (4-schlorophenyl)–sulfone in the German Bight of the North Sea. Chemosphere 45:817-826
Reliability:	2 Valid with restrictions

3.3 TRANSPORT AND DISTRIBUTION BETWEEN ENVIRONMENTAL COMPARTMENTS INCLUDING ESTIMATED ENVIRONMENTAL CONCENTRATIONS AND DISTRIBUTION PATHWAYS

3.3.1 TRANSPORT

Type: Media: Method:

partition coefficient sludge

Monitoring data were collected in a pilot-scale municipal activated sludge treatment plant. The plant consisted of a completely mixed aeration tank (490L) and a secondary settler (280L). The plant was operated at C_{12} LAS influent concentrations between 2 and 12 mg/L and at sludge retention times of 10 and 27 days. At least every other day 24-h samples of 2.5L influent and 2.5L effluent were collected in PE bottles and total (sum of adsorbed and dissolved) LAS concentrations were determined using an HPLC method adapted from Feijtel et al. 1995. At least once a day 200 mL grab samples were taken from the aeration tank and return sludge and transferred into PE centrifuge tubes for determination of dissolved and absorbed LAS. The sludge samples were immediately centrifuged for 15 min at 3500 rpm. The supernatant was transferred into PE bottles and preserved by 3% formalin and stored for a maximum of 10 days at 4°C until further analysis. Representative aliquots of pre-settled influent, final effluent, or supernatant of the centrifuged sludge samples were passed over 6 mL preconditioned C18 SPE columns at a rate not exceeding 10 mL/min. The SPE columns were washed with 2 mL methanol/water and eluted with 5 mL of methanol. The eluate was then passed through strong anion exchange (SAX) columns, washed, eluted and subsequently evaporated to dryness under a gentle flow of nitrogen gas. The dry residue was dissolved in 2-5 mL of HPLC mobile phase. The HPLC was operated according to specifications. Identification of the different LAS alkyl homologues and quantification were made against a commercial LAS mixture (Marlon A390). A sorption-isotherm and the kinetics of adsorption and desorption of LAS to activated sludge were determined in batch experiments. Three different biodegradation tests were also carried out (an OECD 301F ready biodegradation test; a batch activated sludge [BAS] test; and a "by-pass" test developed to mimic condition of the pilot scale activated sludge plant). Only the sorption results are presented here. $K_p (C_{12} LAS)$: 3210 L/kg (log $K_p = 3.5$)

 K_p (commercial C_{11.6} LAS mixture): 2,500 L/kg (log K_p = 3.4)

Test Substance: C₁₂ LAS Remarks:

Results:

Sorption equilibrium was achieved rapidly, within 5-10 minutes. Desorption was less pronounced, but still reached rapid equilibration. The sludge-water partition coefficient K_p of 3210 L/kg volatile suspended solids is reported. Applying the same QSAR for the commercial $C_{11.6}$ LAS mixture results in a value of log $K_p = 3.4$ (i.e., $K_p = 2500$ L/kg), consistent with Feijtel et al. 1999 (see section 3.3.1(b)). In the other experiments conducted in this study, only 2-8% was present as dissolved C_{12} LAS, with the remaining 92-98% adsorbed to the sludge. Despite this high degree of sorption, more than 99% of the LAS load was removed by biodegradation, showing that the adsorbed fraction as well as the soluble fraction of LAS is readily available for biodegradation. Reference: Temmink, H. and Klapwijk, B. 2004. Fate of LAS in activated sludge

plants. Water Research 38:903-912. 2 Valid with restrictions Reliability:

sludge

(b)Type: Media:

partition coefficient

Method:	QSAR analysis
Results:	$K_p (C_{11} LAS)$: 1000 L/kg (log $K_p = 3.0$)
	$K_p (C_{12} LAS)$: 3162 L/kg (log $K_p = 3.5$)
	K_p (commercial C _{11.6} LAS mixture): 2,512 L/kg
Test Substance:Pure C ₁	$_1$ and C ₁₂ LAS; and commercial C _{11.6} LAS
Remarks:	The K_p values for C_{11} and C_{12} LAS are reported in this study as
	experimentally determined by Games et al. (1982), although they actually
	appear to be as reported in Games (1982; see 3.3.1 (d) for summary). The
	K_p for the commercial $C_{11.6}$ LAS mixture is calculated by Feijtel et al.
	using the reported C_{11} and C_{12} values. Also cites as a model input the log
	K_{0c} from frame et al. 1995 (see 5.5.1(b) for summary). These values are consistent with the experimental results of Temmink and Kanwijk (see
	3 3 1(a)
Reference.	Feijtel T C J Struijs J and Matthijs E 1999 Exposure modelling of
	detergent surfactants – Prediction of 90 th -percentile concentrations in The
	Netherlands. Environ. Toxicol. Chem. 18:2645-2652.
Reliability:	4 Not assignable (see 3.3.1(e) for Games 1982)
- ··· · · · · · · · · · · · · · · · · ·	
(c)	
Туре:	organic carbon partition coefficient
Media:	dissolved humic substances
Method:	The association of C_{10} , C_{12} and C_{14} LAS with natural and specimen-grade
	dissolved humic substances (DHS) was measured with fluorescence
	quenching and with ultracentrifugation techniques. Water-soluble organic
	carbon (Carlisle-WSOC) was obtained and extracted from 0-0.1 m depth
	of a Carlisle muck in northwest Ohio. The acid-soluble fraction (Carlisle-
	HA) was suspended, centrifuged, and dialyzed to remove CI and to reduce
	purchased from Aldrich Chemical Company (Aldrich HA) Suwapea
	River humic acid (SRHA) was obtained from the International Humic
	Substances Society The fluorescence quenching followed the method of
	Guathier et al. (1986). Aliquots of the humic acid were placed in
	borosilicate bottles containing either NaCl, CaCl ₂ , or concentrated
	synthetic river water, capped and incubated at 25°C for 18-24 hours, after
	which an aliquot of C ₁₀ , C ₁₂ or C ₁₄ LAS was added and the solutions
	equilibrated at 25°C for 2 hours. All treatments were prepared in
	triplicate. After 2 hours, 3 mL of each sample solution was placed into
	cuvettes and the fluorescence of LAS measured with a Perkin Elmer LS
	5B spectrofluorometer. Ultraviolet absorption measurements were made
	at 230 and 288 nm with a Beckman DU 6 UV-vis spectrophotometer. For
	the second independent analytical method, a batch ultracentrifugation
	uttracentrifuge tubes containing the humic acid in a background
	electrolyte of either NaCl or CaCl, and allowed to equilibrate at 25°C All
	treatments were prepared in triplicate After 2 hours the samples were
	centrifuged at 141 000 g for 6 hours at 25°C. The supernatants were
	decanted and saved for analysis. The walls of the centrifuge tubes were
	extracted with CH ₃ OH, which was saved for analysis. The concentration
	of C ₁₂ LAS in the supernatants and in the CH ₃ OH extracts was determined
	by exciting the solutions in cuvettes at 230 nm and the emission intensity
	recorded at 288 nm with a Perkin Elmer LS-5B spectrofluorometer. The
	quantity of $C_{12}\ \text{LAS}$ associated with DHS was calculated from the

	difference in the initial and final solution concentrations, following the correction for the quantity of C_{12} LAS sorbed to the walls of the centrifuge tubes
Results:	The average Log Koc values over the four DHS materials (Aldrich-HA, Carlisle-WSOC, Carlisle-HA, and SRHA) for each LAS chain length tested are:
	$Log K_{oc} (C_{10} LAS): 4.02 L/kg$
	$Log K_{oc} (C_{12} LAS): 4.83 L/kg$
	$Log K_{oc} (C_{14} LAS): 5.49 L/kg$
	The data for Ca-saturated Aldrich-HA was linear over the entire concentration range of DHS, whereas some curvatura was present in the data from the Ca-saturated SRHA, and considerable deviation from linearity and considerable deviation from
Test Substance: C. I.A	$S (98\% \text{ purity}) = C_{12} LAS (93\% \text{ purity}) and C_{12} LAS (88\% \text{ purity}) are C_{13}$
	synthesized at Procter and Gamble. Uniformly ¹⁴ C-ring labeled C_{10} -, C_{12} - and C_{14} -LAS were obtained from New England Nuclear and were 93.8, 96.3 and 92.5% pure, with specific activities of 26.6, 68.2, and 34.3
Remarks:	Good agreement was obtained with both of the analytical methods, indicating that both techniques can be used to quantify the effects of DHS on speciation of LAS in natural waters with certain limitations. LAS- DHS partition coefficients increased with increasing length of the alkyl chain in the LAS. These data indicate the significance of nonpolar forces in LAS-organic matter interactions. Good agreement was found between the partition coefficients obtained from the two analytical techniques and those calculated from the response of uptake and depuration studies conducted with fathead minnows
Reference:	Traina, S.J., McAvoy, D.C. and Versteeg, D.J. 1996. Association of LAS with dissolved humic substances and its effect on bioavailability. Env. Sci. Technol. 30:1300-1309.
Reliability:	2 Valid with restrictions
(d) Type: Media: Method: Results:	Adsorption [X] ; Desorption []; Volatility []; Other [] water - activated sludge estimation of K _d with Freundlich equation The K _d of commercial LAS was between 660 and 5200 L/kg (6 citations), dependent on organic carbon content and other characteristics of the solid
Remarks: Reference:	phase. Concentration in liquid phase between 1 and 80 mg/L. Painter, H.A. and Zabel, T.F. 1988. Review of the environmental safety of LAS Wrc Medmendham UK Report No CO 1659-M/1/EV 8658
Reliability:	4 Not assignable
(e) Type: Media: Method: Results:	Adsorption [X] ; Desorption []; Volatility []; Other [] water - activated sludge and water - river sediment Comparison of K_d for LAS C_{10} to C_{14} - Year 1982 Adsorption coefficients (L/kg) in activated sludge and river sediment, respectively, for LAS homologues: C_{10} : 220 and 41 C_{11} : 1000 and 100

	C_{12} : 3070 and 330
	C ₁₃ : 9330 and 990
Remarks:	C_{14} : 2950 (for river sediment – not determined for activated sludge) K_d is highly dependent on the alkyl chain length of LAS with
	approximately a factor of 3 increase per carbon and on the position of the
	phenyl group on the alkyl chain. The organic carbon content is also an
	important factor, varying by a factor of 10 between activated sludge and
	river sediment
Reference.	1) Games I.M. 1982 Field validation of exposure analysis modelling
Reference.	systems (EXAMS) in a flowing stream. Ch. 18. In: Dickson, K.L., Maki, A.W. and Cairns, J. (ed.). 1981. Modelling and Fate of Chemicals in the
	Aquatic Environment. 4th Meeting. Sci. Ann Arbor Michigan Pp. 325-346.
	2) Painter, H.A. and Zabel, T.F. 1988. Review of the environmental
	safety of LAS. Wrc Medmendham, UK. Report No. CO 1659-M/1/EV 8658.
Reliability:	4 Not assignable because no details of LAS concentration were provided.
(f)	
Type:	Adsorption [X]; Desorption []; Volatility []; Other []
Media:	water - river sediments
Method:	estimation of K_4 with Freundlich equation
Results:	K_{d} between 6 and 300 L/kg (5 citations), dependent on organic carbon
	content and other characteristics of the solid phase
Remarks.	Concentration in liquid phase between 0.06 and 15 mg/I
Reference:	Painter H A and Zabel T F 1988 Review of the environmental safety
Reference.	of LAS Wro Medmendham LIK Penert No CO 1650 M/1/EV 8658
Daliability	1 Not aggignable
Reliability.	4 Not assignable
(g)	
Type.	Adsorption [X]: Desorption [1: Volatility [1: Other [1]
Media:	water - soil
Method:	estimation of K, with Freundlich equation
Results:	K_1 between 2 and 20 L/kg (3 citations) dependent on organic carbon
Results.	content and other characteristics of the solid phase
Remarks	Concentration in liquid phase between 0.06 and 15 mg/I
Refiarance:	Pointer H A and Zahal T E 1088 Review of the environmental safety
Reference.	of LAS Wro Medmendham LIK Report No CO 1650 M/1/EV 8658
Reliability:	4 Not assignable
(h)	
Type:	Adsorption [X]; Desorption []; Volatility []: Other []
Media [.]	water - soil
Method:	compilation of K_F data from other sources. The Fruendlich isotherm is a general sorption isotherm which describes sorption behaviour and often is used in studies of surfactant sorption. K_F is the Fruendlich isotherm
	coefficient which expresses the affinity of a surfactant for a given solid sorbent. As shown in the equation and table below, the exponent n is a measure of isotherm non-linearity. For n approaching 1, the Freundlich model of sorption becomes equivalent to a linear sorption model.

 $C_{s} = K_{F} \times C_{w}^{n}$

1 1 7		G I I	D f
Log K _F	n	Sorbent	Reference
1.7	1	EPA-B1	Hand and Williams (1987)
2.0	1	EPA-5	Hand and Williams (1987)
2.7	1	RC4	Hand and Williams (1987)
3.2	1	RC3	Hand and Williams (1987)
~0.1	1	different soils	Ou et al. (1996)
2.8	1.15	marine sediment	Rubio et al. (1996)
0.6	0.77	soil, clay loam(A)	Abe and Seno (1985)
1.4	1.20	soil, clay loam(B)	Abe and Seno (1985)
1.2	1.19	soil, sandy loam	Abe and Seno (1985)

Log K_F values for a selection of C_{12} -LAS types is shown in the table below:

Results:

Sorbent refers to the standard or natural soil or sediment used, as the affinity for sorption depends on both the chemical substance and the characteristics of the sorbent. All data were drawn from the original sources referenced in the table.

- Remarks: The nonlinearity parameter implies that sorption affinity decreases with increasing LAS concentrations, which suggests that concentration dependency should be taken into account when assessing sorption of surfactants such as LAS.
- Reference: Tolls, J. and Sijm, D.T.H.M. 2000. Estimating the properties of surface-active chemicals. In: Boethling, R.S. and Mackay, D. Handbook of Property Estimation Methods for Chemicals. Lewis Publishers.
 Reliability: 4 Not assignable because the original articles were not directly reviewed.

3.3.2 THEORETICAL DISTRIBUTION (FUGACITY CALCULATION)

(a)

Media: Air-biota []; Air-biota-sediment-soil-water [X]; Soil-biota []; Water-air []; Water-biota []; Water-soil [] Method: Fugacity level I []; Fugacity level II []; Fugacity level III [X]; Fugacity level IV []; Other (calculation) []; Other (measurement) [] Five stage Mackay-type modelling including evaluative, regional and local-scale models. The first two stages involve classifying the chemical and quantifying the emissions into each environmental compartment. In the third stage, the characteristics of the chemical are determined using a quantitative equilibrium criterion model (EQC), which is conducted in three steps using levels I, II, and III versions of the model that introduce increasing complexity and more realistic representations of the environment. The EQC uses a generic, evaluative environment, which is 100,000 km² in area. In the fourth stage, ChemCAN, which is a level III model for specific regions of Canada, was used to predict the chemical's fate in southern Ontario. The final stage was to apply local environmental models to predict environmental exposure concentrations. For LAS, the WW-TREAT, GRiDS, and ROUT models were used to predict the fate of LAS in a sewage treatment plant and riverine receiving waters. Estimated properties used as input parameters to the models are shown below for LAS (from various sources; average values; based on the best default environmental and physicochemical values available at the time of modeling):

Molecular mass	348
Air-water partition coefficient	0
Aerosol-water partition coefficient	100
Soil-water partitition coefficient (L/kg)	20
Sediment-water partitition coefficient (L/kg)	570
Fish-water partitition coefficient (L/kg)	250
Half-life in air (h)	
Half-life in water (h)	24
Half-life in soil (h)	480
Half-life in sediment (h)	96

The level I calculation assumes a steady-state equilibrium partitioning of a fixed quantity of LAS (100,000 kg) with no reaction or advection processes. The level II calculation assumes a fixed input of 1000 kg/h, which is balanced by reaction and advection losses. Relative partitioning is identical to level I. For level III, the ChemCAN model assumes the following estimated input quantities for LAS:

Total discharge to the environment (kg/yr)	1,444,000
Discharge to the air	
Discharge to water	144,000
Discharge to soil	1,296,000
Total input in the region (kg/year)	1,440,000
Total input in the region (kg/hour)	164.4

The authors base these input quantities for the ChemCAN model on a recent estimate of LAS annual production in North America, western Europe and Japan as approximately 1.4 million tons and an annual per capita consumption of LAS in the United States of 1.3 kg/year. LAS is disposed "down-the-drain" and approximately 98% is removed in sewage treatment. About 30% of the LAS is removed in treatment by adsorption onto primary and secondary sewage solids. Over 60% of the sludge was assumed to be disposed of in landfills or applied to agricultural soils, thus there is the potential for LAS to reach the soil environment. Therefore, the level III model assumes a substantial discharge (90%) of LAS to soil following sewage treatment. Inputs considered the specific nature of nonvolatile surfactants such as LAS. For example, the use of Kow as a descriptor for organic phase-water partitioning is inappropriate for LAS and there is no need for a vapor pressure or air-water partition coefficient. Because LAS is a mixture, average properties were used as inputs to the models. In the EQC model, LAS is treated using the equivalence approach as the equilibrium criterion.

Results: The level I and II models each resulted in LAS partitioning to air, water, soil, and sediment at percentages of 0%, 25.97%, 56.09%, and 17.76%, respectively. The overall residence time of LAS is 100 hours and removal is primarily by biodegradation in water (76%) and partitioning in sediment (13%). Thus, the impacts of LAS will be restricted to local receiving waters and their sediments and biota. In level III, when

	discharges are directly to water, the resident than 99% remains in the water, though im- partitioning to sediments might be expe- soil, as was assumed in the ChemCAN days because of the slower biodegradation media. Based on these findings, the degradation rates in water and soil, and we	dence time is 33 hours and more a shallower receiving waters more beted. When the discharge is to model, the residence time is 28 on rate and little transfers to other e dominant fate processes are vater-sediment transfer.
	Using the ChemCAN 4 model, of the tota environment assuming the discharge ra concentrations were predicted to be: to air: 0% dissolved in water: 0.64% in soil: 99.35% in sediment: 0.0036%	al amount of LAS released to the ates above, the distribution and (0 mg/m^3) $(0.44 \mu\text{g/m}^3)$ $(7.06 \mu\text{g/kg})$ $(0.00347 \mu\text{g/kg})$
Remarks:	Based on an estimated total discharge to kg/year $(1.44 \times 10^5 \text{ kg} \text{ to water and } 1.29 noted that the discharge assumptionsconservative and likely overpredict the acompartments, for example, the soil ofconducted by the model developer and ato demonstrate that the approach was achemicals$	o the environment of 1.44×10^6 96 x 10^6 kg to soil). It should be used by the authors are highly amount of LAS entering various compartment. This study was acknowledged expert on fugucity ppropriate for different types of
Reference:	Mackay, D., Di Guardo, A., Paterson, S. D. 1996. Assessment of chemical evaluative, regional and local scale me chlorobenzene and linear alkylbenzene Chem. 15:1638-1648. 2 Valid with restrictions	, Kicsi, G., Cowan, C. and Kane, fate in the environment using odels: Illustrative application to sulfonates. Environ. Toxicol.
(b) Media: Method:	Air-biota []; Air-biota-sediment-soil-wat Water-air []; Water-biota []; Water-soil [Fugacity level I []; Fugacity level II [] level IV []; Other (calculation) []; Oth model HAZCHEM derived from MacKa a water purification module (comparable by the Netherlands Authorities). Region probabilistic evaluation of natural of determination of input parameters using parameters held constant in the simulation were based on the best available data at the	ter [X]; Soil-biota []; ; Fugacity level III [X]; Fugacity her (measurement)[] Multi-media y type level III model, including to SIMPLETREAT model used onal model for Europe. Includes variability and inaccuracy in Monte Carlo simulation. Input ns for the LAS used in the model he time of modeling and are:
	Molecular weight Melting point (°C) Vapor pressure (Pa) Solubility (mg/L) Log Kow Half-life life in air (h) Half-life in water (h) Half-life in soil (h)	347 10 1 x 10 ⁻¹⁰ 350 2.5 8 35 339

Half-life in sediment (h)	17
Soil-water partitition coefficient (L/kg)	1000
Sediment-water partitition coefficient (L/kg)	1000
Suspended solids-water partitition coefficient (L/kg)	1000

Parameters that were varied using lognormal distributions for the Monte Carlo simulations included water surface and arable land fractions, depths of various compartments, fraction organic carbon in various compartments, advective residence times, temperature, and others.

Results: Predicted concentrations in the various compartments as defined by the model as shown in the table below. Degradation in the soil was not taken into account and the model was not calibrated. Measured concentrations in arable soil were generally below 1 ppm. Results are the 5th and 95th percentile values from the Monte Carlo analysis and the normal average.

	Average	5 percentile	95 percentile
air (ug/m^3)	3.23 E-12		
biota (ppm)	5.99 E-2	7.11 E-3	1.95 E-1
sediment (ppm)	4.90 E-3	3.23 E-3	1.38 E-2
arable soil (ppm)	44.2	7.02	1.11 E+2
suspended. matter (ppm)	3.79	0.449	12.3
dissolved in water (mg/L)	3.79 E-3	4.49 E-4	1.23 E-2
suspended in water (mg/L)	7.81 E-5	1.54 E-5	2.16 E-4

Remarks: Input data were the best estimates from ECETOC Task Force members, including detergent industries. Note the predicted average value for arable soil was reported in ECETOC 1993 as 4.42E-4, which is not possible given the 5th and 95th percentile values. Therefore, the recalculated value provided in the IUCLID HEDSET (Year 2000 data) was used above.
Reference: 1) ECETOC. 1993. Environmental hazard assessment of substances. Technical Report No. 51, European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels.
2) BKH. 1993. The use of existing toxicity data for estimation of the Maximum Tolerable Environmental Concentration of Linear Alkyl Benzene Sulfonate, Part I: Main report; Part II: Data base. Study carried out for ECOSOL, BKH Consulting Engineers, Delft, NL.

Reliability: 4 Not assignable because of uncertainty related to the input parameters.

3.4 MODE OF DEGRADATION IN ACTUAL USE

Remarks: Refer to other sections.

3.5 BIODEGRADATION

(a)	
Туре:	aerobic [X]; anaerobic []
Inoculum:	adapted []; non-adapted [X] Marl, East treatment plant (Germany)
Concentration:	10 mg/L
Medium:	Semi-continuous activated sludge (SCAS)

August 11, 2005

(a)

Method: The Marl purification plant consists of a mechanical prepurifying area, two parallel trickling filters of 800 m³ volume each, and a stimulation plant of 106 m³ volume, as well as mechanical final clarification. Samples were collected at the inlet of the trickling filters and at the exit of the final clarifier. Three-hour composite samples were taken for each analysis. The MBAS procedure was used to quantify LAS concentrations. The specific method for analyzing the homologues is reported in Wickbold 1964.

Results:

Results of the percent removal by activated sludge for different alkyl chain length homologues and phenyl positions are shown in the following table:

	Phenyl Position	% Degradation
	5	52
C	4	68
C_{10}	3	88
	2	92
	6	58
	5	72
C ₁₁	4	89
	3	93
	2	94
	6	81
	5	92
C ₁₂	4	94
	3	95
	2	95
	7,6 ^a	92
C ₁₃	5	94
	4	95
	3	96
	2	96

^a Not analytically separable

GLP:

Yes [] No [X] ? []

Test Substance: C_{10} to C_{13} homologues of LAS with varying phenyl positions

10	
Remarks:	The results show that longer chain homologues are removed faster than
	the shorter chain homologues, indicating that primary biodegradation
	increases as the chain length increases. In addition, the greater the
	distance between the sulfonic group and the more distant terminal methyl
	group on the alkyl chain the faster the degradation (i.e., phenyl position 2
	degrades faster than phenyl position 5 for the same homologue). For
	example, percent removal was 52, 68, 88 and 92% for the C_{10} LAS with
	phenyl positions 5, 4, 3, and 2, respectively.
Reference:	1) Bock, K.J. and Wickbold, R. 1966. Auswirkungen der Umstellung auf
	leicht abbaubare Waschrohstoffe in einer großtechnischen Kläranlage und
	im Vorfluter. Vom Wasser 33:242-253.
	2) Wickbold, R. 1964. Zwischenprodukte beim Abbau eines geradkettigen
	Alkylbenzolsulfonates. Vortrage IV, Inern. Kongr. F. grenzflachenaktive
	Stoffe, Brussel. (not available for review)
Reliability:	2 Valid with restrictions
2	
(b)	

August 11, 2005

Type:	aerobic [X]; anaerobic []
Inoculum:	adapted [X]; non-adapted [X]; activated sludge [X]
Concentration of the	chemical: 10 mg/L related to COD []; DOC [X] test substance
Medium:	water []; water-sediment [X]; soil []; sewage treatment []
Degradation:	69.6% after 28 days (acclimated inoculum)
	66.7% after 28 days (non-acclimated inoculum)
Results:	readily biodeg. []; inherently biodeg. []; under test condition no
	biodegradation observed [], other [X]
	Kinetics:

	% Biodegradation	% Biodegradation
Days	(Acclimated)	(non-Acclimated)
5	14.3	9.2
8	32.4	24.5
12	49.5	43.6
19	63.9	60.8
28	69.6	66.7

Method: OECD 301 B, modified Sturm test, also reported as method C 5 in the Italian D.M. 109. The reference standard sodium benzoate was used at the same concentration of the tested surfactants (about 10 mg/L). The testing period was 28 days and during this time the testing solutions were kept in dark glass vessels. A supernatant solution from a sludge, which was aerated and left to settle, was used as an inoculum for each biodegradation test at an amount equal to 1% of the solution. Both the STP sludges and the laboratory assimilated sludges were analysed for the dry matter contents. Tests were conducted using acclimated or nonacclimated inocula to determine whether this affected ultimate biodegradation. Acclimation was achieved by running the laboratory activated sludge plant for seven days before testing with a synthetic influent containing LAS at a concentration of abourt 10 mg/L. Tests were conducted on LAS and three other surfactants. Yes [X] No [] ? []

 C_{10-13} LAS; average alkyl chain length = $C_{11.6}$ Test substance:

> LAS was biodegradable using both acclimated and non-acclimated Acclimated inocula did not significantly improve the total inocula. biodegradation, but did accelerate the attainment of the degradation plateau. The 10-day time-window criterion was missed slightly, so this study does not meet the criteria for ready biodegradability. However, this is expected given biodegradation kinetic curve dynamics related to increasing dissolved organic carbon content because the CO₂ generated during the biodegradation process is not totally evolved and removed from the test medium.

Ruffo, C., Fedrigucci, M.G., Valtorta, L., and Cavalli, L. 1999. Biodegradation of anionic and non-ionic surfactants by CO₂ evolution. Acclimated and non-acclimated inoculum. Riv. It. Sostanze Grasse LXXVI: 277-283.

Reliability: 1 Valid without restriction

(c) Type:

Inoculum:

GLP:

Remarks:

Reference:

aerobic [X]; anaerobic [] adapted []; non-adapted [X]; domestic activated sludge from Enid, OK

August 11, 2005

Concentration:	10 mg/L
Medium:	Semi-continuous activated sludge (SCAS)
Degradation:	>98% in 20 days (primary biodegradation)
	62% in 20 days (inherent biodegradation)
Results:	readily biodeg. []; inherently biodeg. [X]; under test condition no
	biodegradation observed [], other []
Method:	¹⁴ C ring-labeled LAS and ¹⁴ C alkyl-labeled C ₁₂ LAS were introduced to a
	simulated secondary waste treatment system (SCAS) following the
	ASTM and SDA standard methods.
GLP:	Yes [] No [X] ? []
Test Substance:1) LAS	with the following homologue composition: C_{11} 42%, C_{12} 38%, C_{13} 20%;
	average alkyl chain length C _{11.8}
	2) C_{12} LAS
Remarks:	In a secondary waste treatment environment, the alkyl and ring portions of
	LAS both biodegrade extensively, with the fate of the LAS alkyl and ring
	carbon nearly identical. Within the 20 day test period, 62% of the alkyl
	and ring carbon converted to carbon dioxide.
Reference:	Nielsen, A.M. and Huddleston, R.L. 1981. Ultimate biodegradation of
	linear alkylbenzene sulfonate alkyl and ring carbon. Developments in
	Industrial Microbiology. 22:415-424.
Reliability:	2 Valid with restrictions
(d)	
Туре:	aerobic [X]; anaerobic []
Inoculum:	Bacterial biomass obtained from the settled supernatant slurry solution of
	a fertile soil
Concentration:	10 mg/L
Medium:	water [X]; water-sediment []; soil []; sewage treatment []
Degradation:	See methods
Results:	See remarks
Method:	OECD 301E Ready Biodegradability test, with the following
	modifications: LAS was the sole source of carbon introduced (i.e., no
	activated sludge inoculum), along with an enriched level of bacterial
	biomass. Preliminary tests showed that more than 90% of the LAS
	disappeared within 4 days, so LAS was restored by adding about 10 mg/L
	of fresh substance every 4 days for 80 days. The test was stopped 4 days
	after the last LAS addition (i.e., at 84 days). Specific HPLC analysis was
	used to measure LAS and SPCs.
GLP:	Yes [] No [] ? [X]
Test Substance:Comme	ercial HF-type LAS with a C_{10-13} alkyl chain and a linearity of about 93%
	(DA1S < 0.5%; iso-branching 5-6%). (CAS #68411-30-3); average alkyl
	chain length = $C_{11.6}$
Remarks:	The final organic residue of this prolonged biodegradation test was
	characterized in detail and showed that no accumulation of iso-branching
	structures had occurred. This indicates that iso-branched material of LAS
Defense	is amenable to blodegradation as well as the linear components.
Reference:	Cavalli, L., Cassani, G., Lazzarin, M., Maraschin, C., Nucci, G. and Valtarta, J. 1006h. Las branching of linear allulhangene subhanata
	vanoria, L. 19900. Iso-oranoning of finedr alkytoenzene sulphonate (LAS). Topsido Surf Det 22:202 209
Reliability:	(LAS). Tenside Sull. Del. 33.373-398. 2 Valid with restrictions
Renaulity.	
(e)	

Туре:	aerobic [X]; anaerobic []
Inoculum:	adapted []; non-adapted [X]; activated sludge, domestic
Concentration:	10.8 mg/L related to COD []; DOC [X] test substance []
Medium:	water [X]; water-sediment []; soil []; sewage treatment []
Degradation:	93% after 28 days
Results:	readily biodeg. [X]; inherently biodeg. []; under test condition no
	biodegradation observed [], other []
Kinetic:	7 day = 59%
	14 day = 73%
	21 day = 82%
Method:	Directive 79/831/EEC, Appendix V, C.4-A 1990. DOC Die-Away Test.
	(OECD 301A Test). Samples were collected from an activated sludge basin with predominantly local municipal waste water. The final sludge concentration was 19.3 mg/L. Two replicates were used for the LAS test concentration (9.44 mg/L) with inoculum, one with inoculum without LAS, and two control replicates (sodium benzoate, 10.13 mg/L) with inoculum. A total of 900 mLs of the solutions were put into 2000 mL Erlenmeyer flasks at the beginning of the test. The loosely covered flasks were incubated at 21.5 to 22.6°C in the dark on a mechanical shaker for 28
	days. Samples were collected on days 0, 7, 14, 21 and 28 for DOC
CI D.	analysis.
ULP. Tost substance:	$I \in S[A] N \in [J] : [J]$ Marlon A 200 (CAS #68411.20.2) C = LAS: average alleyt shain length
Test substance.	Mation A 590 (CAS #08411-50-5) C_{10-13} LAS, average arkyr chain length = $C_{11.6}$
Remarks:	LAS is readily biodegradable. The 10-day window criterion was fulfilled. The control substance (sodium benzoate) showed 99% degradation after 28 days. This is a key study for ready biodegradability (see SIAR Table
Reference:	4). Schoeberl, P. 1993b. Bestimmung der biologischen Abbaubarkeit von Marlon A 390 im DOC-DIE AWAY Test. Huels Final Report No. DDA- 21
Reliability:	1 Valid without restriction
(f)	
Type:	aerobic [X]: anaerobic []]
Inoculum:	adapted [1]: non-adapted [X]: activated sludge
Concentration:	9.7 mg/L related to COD []: DOC [\mathbf{X}] test substance []
Medium:	water [X]: water-sediment []: soil []: sewage treatment []
Degradation:	9/% after 28 days
Degradation.	readily biodeg [X]; inherently biodeg []; under test condition no.
Results.	biodegradation observed [] other []
Kinetic:	3 day = 38% 7 day = 81%
	14 day = 88%
	21 day = 94%
Method:	Directive 79/831/EEC, Appendix V, C.4-A - Year: 1990. DOC Die-
	Away Test. (OECD 301A Test). Samples were collected from an activated sludge basin with predominantly local municipal waste water. The final sludge concentration was 18.1 mg/L. Two replicates were used for the LAS test concentration (8.96 mg/L) with inoculum, one with inoculum without LAS, and two control replicates (sodium benzoate, 11.65 mg/L)
	with inoculum. A total of 900 mLs of the solutions were put into 2000 mL

CI D.	Erlenmeyer flasks at the beginning of the test. The loosely covered flasks were incubated at 21.8 to 22.2°C in the dark on a mechanical shaker for 28 days. Samples were collected on days 0, 3, 7, 14, 21, 27 and 28 for DOC analysis.
Test substance:	Marlon A 390 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length
Remarks:	LAS is readily biodegradable. The 10-day window criterion was fulfilled. The control substance (sodium benzoate) showed 96% degradation after 28 days. This is a key study for ready biodegradability (see SIAR Table 4).
Reference:	Schoeberl, P. 1993c. Bestimmung der biologischen Abbaubarkeit von Marlon A 390 im DOC-DIE AWAY Test. Huels Report No. DDA-32.
Reliability:	1 Valid without restriction
(g) Type:	aerobic [V]: anaerobic []
Inoculum:	adapted [1]: non-adapted [X]: municipal sewage treatment plant effluent
Concentration:	5 mg/L related to COD []: DOC [X] test substance []
Medium:	water [X]; water-sediment []; soil []; sewage treatment []
Degradation:	76% after 28 day
Results:	readily biodeg. [X]; inherently biodeg. []; under test condition no
	biodegradation observed [], other []
Method:	Directive 84/449/EEC, C.3 Modified OECD screening test. (OECD 301E Test).
GLP:	Yes [] No [X] ? []
Test substance:	Marlon A 350 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = $C_{11.6}$
Reference:	European Commission. 2000b. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929).
Reliability:	4 Not assignable
(h) Tomor	
Type: Incoulum:	adented []; non adented [V]; activated sludge
Concentration:	10 mg/L related to COD []: DOC [V]: test substance []
Medium [.]	water [X]: water-sediment []: soil []: sewage treatment []
Degradation ⁻	91 6% based on DOC reduction
Results:	readily biodeg []: inherently biodeg []: under test condition no
	biodegradation observed [], other [X]
Method:	OECD Guideline 303 A "Simulation Test - Aerobic Sewage Treatment: Coupled Unit Test" 1981. The studies were carried out in the OECD Confirmatory Test plant at different laboratories using synthetic wastewater as specified in the EC Guidelines 82/242 and 82/243. The amount of surfactant supplied was 10 mg/ of MBAS/L. The amount of MBAS in the wastewater feed corresponds approximately to that detected in the feed of municipal sewage plants, which corresponds to about 6 mg DOC/L. Test periods in the different laboratories ran from 33 to 139 days.
GLP:	Yes [] No [X] ? []
Test substance:	C_{10-13} LAS, sodium salt (CAS #68411-30-3); average alkyl chain length = $C_{11.6}$

Remarks:	The degradation rate of 91.6% is the mean of 10 studies conducted at 7 different laboratories, based on DOC reduction. Since numerous studies have shown that not only anionic surfactants are shown in the MBAS analysis, the degradation plant discharge was analyzed on days 22, 24, 29 and 30 using HPLC analysis. Results showed that the content of intact LAS was < 20 μ g/L, which is about 8% of the 250 μ g/L MBAS content in the discharge. This means that the real LAS primary degradation reaches 99.8%.
Reference:	Schoeberl, P. 1991. Coupling the OECD confirmatory test with continuous ecotoxicity tests. Tenside Surf. Det. 28:6-14.
Reliability:	2 Valid with restrictions
(i)	
Type:	aerobic [X]; anaerobic []
Inoculum:	adapted []; non-adapted [X]; municipal sewage treatment plant effluent
Concentration:	5 mg/L related to COD []; DOC []; test substance [X] MBAS
Medium:	water [X]; water-sediment []; soil []; sewage treatment []
Degradation:	95% after 19 days
Results:	readily biodeg. [X] ; inherently biodeg. []; under test condition no biodegradation observed [], other []
Method:	OECD Screening Test according to "Verordnung ueber die Abbaubarkeit anionischer und nichtionischer grenzflaechenaktiver Stoffe in Wasch- und Reinigungsmittel vom 30.1.1977". Bundesgesetzblatt Teil I, S. 244. 1977
GLP:	Yes [] No [X] ? []
Test substance:	Marlon A 350 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length
Reference:	European Commission. 2000b. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929).
Reliability:	4 Not assignable
(j)	
Type:	aerobic [X]; anaerobic []
Inoculum:	adapted []; non-adapted [X]; synthetic sewage
Concentration:	19.2 mg/L related to COD []; DOC []; test substance [X]
Medium:	water [X]; water-sediment []; soil []; sewage treatment []
Degradation:	92.3% based on DOC reduction
Results:	readily biodeg. []; inherently biodeg. []; under test condition no biodegradation observed [] other [X]
Method:	OECD-Guideline 303A coupled units test. The studies were carried out in the OECD Confirmatory Test plant at different laboratories using synthetic wastewater as specified in the EC Guidelines $82/242$ and $82/243$. In these studies, LAS was added to the test at 10 mg/L. Test periods in the different laboratories ran from 33 to 139 days. Test temperature ranged from 19.6-23.0°C.
GLP:	Yes [X] No [] ? []
Test substance:	Marlon A390 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = $C_{11.8}$
Remarks:	The degradation rate of 92.3% is the mean of 10 studies conducted at 7 different laboratories, based on DOC reduction, with LAS added to the confirmatory test plant.

Reference:	 Schoeberl, P. 1991. Coupling the OECD confirmatory test with continuous ecotoxicity tests. Tenside Surf. Det. 28:6-14. European Commission. 2000b. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929). Walid with contributions.
Reliability:	2 Valid with restrictions
(k)	
Type:	aerobic [X]; anaerobic []
Inoculum:	adapted []; non-adapted [X];
Concentration:	10 mg/L
Medium:	related to COD []; DOC []; test substance [X] as MBAS
Desmadation	water [X]; water-sediment []; soil []; sewage treatment []
Degradation:	99.8% after 5 days (for sewage dose of 0.5 mg/L)
	74.5% after 7 days (no sewage dose, but aerated)
	40.7% after 7 days (no sewage non aerated)
Results:	readily biodeg []: inherently biodeg []: under test condition no
icourts.	biodegradation observed [], other [X] primary biodegradation
Method:	Samples from test flasks were taken at 12 hour intervals and the detergent concentration expressed as methylene blue active substance was determined. The initial concentration of detergent was 10 mg/L. The degradation of LAS was evaluated in raw canal water and in canal water seeded with either 0.5 ml/L or 1.0 ml/L sewage from the Ismalia sewage
CLD	treatment plant.
GLP:	Yes NO[X] ?]
l'est substance:	Commercial LAS detergent (provided by Merck, Darmstadt, Germany); likely average alkyl chain length = C_{11}
Remarks:	Medium was Ismailia Canal water (Cairo, Egypt). ABS and a 1:1 mixture of ABS:LAS were also examined. Degradation of LAS was rapid, whereas degradation of ABS and the 1:1 mixture of ABS/LAS was slower. In all cases, aeration and addition of sewage microflora enhanced degradation.
Reference:	Abdel-Shafy, H.I., Azzam, A.M. and El-Gamal, I.M. 1988. Studies on the degradation of synthetic detergents by sewage. Bull. Environ. Contam Toxicol 41:310-316
Reliability:	2 Valid with restrictions
(1)	
(I) Type:	aeropic [X]: anaeropic []
I ypc.	adapted [1]: non-adapted [X]:
Concentration:	15 mg/L related to COD []: DOC []: test substance [X] HPLC
Medium:	water []: water-sediment []: soil []: sewage treatment [X]
Degradation:	95% after 28 days (I Δ S- Δ)
Degradation.	98% after 28 days (LAS-B)
Results:	readily biodeg. []; inherently biodeg. []; under test condition no biodegradation observed [] other [X]
Method:	OECD303A coupled units test modified by AIS/CESIO "ad hoc" working
GLP	εισαρ. Ves [X] No [] ? []
Test substance:	Two $C_{10,12}$ LAS commercial products as described in the remarks

Remarks:	LAS-A, produced by the HF process, was 93% linear with 0.5% tetralins and 6.5% iso-branching and the following homologue distribution of the alkyl chain: C_{10} 15%, C_{11} 34%, C_{12} 31%, C_{13} 20% (average alkyl chain length = $C_{11.56}$). LAS-B, produced by the AlCl ₃ process, was 98% linear with 0.5% tetralins and 1.5% iso-branching and the following homologue distribution of the alkyl chain: C_{10} 15%, C_{11} 29%, C_{12} 32%, C_{13} 24%, average alkyl chain length = $C_{11.65}$. HPLC methods specific to LAS were used to directly measure the test substances (LAS as well as the biodegradable intermediates). The ultimate biodegradation rates determined by HPLC are >10% higher than those obtained using DOC determination. The studies were conducted according to high standards and should be considered reliable.
Reference:	Cavalli, L., Cassani, G. and Lazzarin, M. 1996a. Biodegradation of linear alkylbenzene sulphonate (LAS) and alcohol ethoxylate (AE). Tenside Surf. Det. 33:158-165.
Reliability:	2 Valid with restrictions
(m)	
Type:	aerobic [X]; anaerobic []
Inoculum:	adapted []; non-adapted []; None Stated
Concentration:	15 mg/L related to COD []; DOC []; test substance [X] HPLC
Medium:	water [X]; water-sediment []; soil []; sewage treatment []
Degradation:	95% after 6 days
Results:	readily biodeg. []; inherently biodeg. []; under test condition no
	biodegradation observed [], other [X]
Method:	LAS and water collected from a briny pond (salinity: 9.5 g/L) were tested in an aerated cylindrical reactor at 21°C. Samples were removed periodically and analyzed for parent compound and metabolites by HPLC.
GLP: Test substance:	Yes [] No [] ? [X] LAS (CAS #25155-30-0); activity: >99%; average alkyl chain length =
Remarks:	C _{11.6} The half-life of LAS was 1.5 days. The HPLC method employed accurately defines the metabolites formed by primary biodegradation. All metabolites were not persistent and rapidly underwent further biodegradation
Reference:	Sarrazin, L., Arnoux, A., Rebouillon, P. and Monod, J.L. 1997. Biodegradation of linear alkylbenzenesulfonate (LAS) in briny water and identification of metabolites using HPLC analysis by direct injection of samples. Toxicological and Environmental Chemistry. 58:209-216.
Reliability:	2 Valid with restrictions
(n)	
Type:	aerobic [X]; anaerobic []
Inoculum:	adapted []; non-adapted [X]; activated sludge
Concentration:	1 mg/L related to COD []; DOC []; test substance [X]
Medium:	Activated sludge
Degradation:	>96% after 6 hours
Results:	Primary and complete biodegradation were described by a first-order model with rate constants of 0.96 1 10/h (t = 0.63, 0.72 h) for primary
Method:	loss and 0.50-0.53/h ($t_{1/2} = 1.30-1.38$ h) for complete degradation. Radiolabeled LAS was dosed at an environmentally relevant concentration into biotic and abiotic activated sludge. Activated sludge mixed liquor

	was used from two STP (Polk Run and Sycamore) near Cincinnati. Standard methods were used and the test flasks (reactors) were maintained at $20^+/-2^\circ$ C.			
GLP:	Yes [] No [] ? [X]			
Test Substance: ¹⁴ C [uni	form ring] C ₁₂ LAS			
Reference:	Federle, T.W. and Itrich, N.R. 1997. Comprehensive approach for			
assessing the kinetics of primary and ultimate biodegradation of chem in activated sludge: Application to linear alkylbenzene sulfonate. Env				
	Sci Technol 31.1178-1184			
Reliability:	2 Valid with restrictions			
(0)				
Type:	aerobic []; anaerobic [X]			
Methods:	Experiments were conducted in which enriched cultures of anaerobic			
	bacteria were provided with 60 µmole/L LAS as the sole source of sulfur. Conditions were maintained anoxic in salts-medium containing several sources of carbon			
Results	Strain RZIAS an anaerobic bacteria was isolated from wastewater			
Results.	treatment plants in Germany RZLAS was shown to degrade LAS			
	indicating that microarganisms able to metabolize LAS in anaerabic			
	anditions evict in noture			
CL D.				
GLP:	$\begin{array}{c} \text{res}[] \text{No}[] ([\mathbf{A}]) \\ \hline \\ 1 0 1 0 0 0 0 0 0 0 $			
Test Substance.Comme	ficial C_{10-13} LAS (CAS #08411-50-5; average alkyl chain length = $C_{11.6}$) and C_{10-13} LAS (pure homologue)			
Deference:	C_{12} LAS (put e homologue) Denger K and Cook A M 1000 Linear all ulbanzona subbanata (LAS)			
Reference.	bioavailable to anaerobic bacteria as a source of sulphur. Journal of			
D 11 1 11.	Applied Microbiology. 86:165-168.			
Reliability:	2 Valid with restrictions			
(p)				
Type:	aerobic []; anaerobic [X]			
Inoculum.	adapted [1], non-adapted [X], granular sludge			
Concentration:	9 concentrations ranging from 12.5 to 350 mg/bottle			
Medium:	J ianid			
Degradation:	$5-1/10^{\circ}$ after 1/1 days			
Mathad:	Unflow Anarchia Sludge Dienket (UASD) type repeters with a working			
	volume of 315 mL in serum type glass bottles were used to measure degradation. The bottles were incubated at $30^+/-2^\circ$ C for 14 days. The sludge concentration was 1.5 g/L. Methane production was measured daily using both the Head Space method and the Displacement method. LAS was specifically determined using HPLC.			
GLP:	Yes [] No [] ? [X]			
Test Substance:LAS, so	bdium salt derived from commercial LAB with the homologue distribution:			
	$ 0.7%, C_{10} 8.4%, C_{11} 40.9%, C_{12} 32.5%, C_{13} 16.6%, and C_{14} 0.9%.$			
Remarks:	Final molecular weight of 341.5. Average alkyl chain length = $C_{11.54}$ The study determined an IC ₅₀ of 40 to 150 mg/L as inhibitory to anaerobic microbial populations. LAS concentrations are usually found in anaerobic digestors at 5-25 g/kg, which is about an order of magnitude lower than the observed IC ₅₀ values. The study demonstrates that LAS anaerobic biodegradation does occur under conditions that are not sulphur-limited, using anaerobic digestor sludge and specific HPLC methods to measure the loss of parent material.			

Reference:	Sanz, J.L., Rodriguez, M., Amils, R., Berna, J.L., de Ferrer, J. and Moreno, A. 1999. Anaerobic biodegradation of LAS (Linear Alkylbenzene Sulfonate): Inhibition of the methanogenic process. La Rivista Holiana Delle Sostanze Grasse. LXXVI:307-311.
Reliability:	2 Valid with restrictions
(q) Terrai	earchie []), an earchie [V]
Type.	Activated sludge
Modium:	Servere sludge
Degradation:	20.02% after 250 days: 50% in a second 00 day experiment
Degradation.	LAS hisdegrades under strict anaerobia conditions
Method:	The standard ECETOC-28 method, which measures the pressure of the
	biogas as an indicator of anaerobic degradation, was extended to 250 days and supplemented with specific HPLC analysis of LAS concentrations. Testing bottles were prepared in triplicate and monitored for the biodegradation of LAS already present in the sludge without extra LAS being added to the system. A second experiment was also based on the ECETOC-28 method, with several modifications used to further control the anaerobic test conditions.
GLP:	Yes [] No [] ? [X]
Test Substance:LAS, as	s exists in sewage sludge
Remarks:	Specific HPLC analysis (loss of LAS) confirms that LAS undergoes
	primary biodegradation anaerobically in the standard ECETOC-28, although increased gas production (mineralization) was not observed. A redisolution of precipitated adsorbed LAS seemed to occur in the digestion process. The product in liquid solution is probably the fraction being degraded
Reference:	Prats. D., Rodriguez, M., Llamas, J.M., De La Muela, M.A., de Ferrer, J.,
	Morena, A. and Berna, J.L. 2000. The use of specific analytical methods to assess the anaerobic biodegradation of LAS. 5 th World CESIO Congress V2:1655-1658 Firenze Italy
Reliability:	2 Valid with restrictions
(r)	
Tvpe:	aerobic [X]: anaerobic []
Inoculum:	Trickling filters
Medium:	Sewage sludge
Results:	ROC supported sulfur-limited growth of <i>P. putida</i> . Extensive
	desultonation of ROC was observed.
Method:	Other studies have confirmed that LAS is completely biodegradable in
	tricking filters and by- products in commercial LAS (e.g., DATS, SPC)
	are subject to biotransformation to nondegraded compounds termed
	refractory organic carbon (ROC). The current study investigated the further desulfonation of ROC by a strain of <i>Pseudomonas putida</i> . ROC was generated from commercial LAS, which served as a carbon source, in a trickling filter and isolated by solid-phase extraction. The solution of ROC was then used as a potential sulfur source for the growth of <i>P. putida</i> . Experiments were conducted in triplicate at 30°C and cultures were aerated on an orbital shaker. Dissolved Organic Carbon was measured using a total organic carbon analyzer and HPLC.
GLP:	Yes [] No [] ? [X]
1 0005	6 0

Test Substance:Comme	rcial LAS (Sirene 113)
Remarks:	Earlier work shows that the biodegradation and biotransformation of commercial LAS as a carbon source for growth leads to a residue of sulfonated aromatic compounds, termed refractory organic carbon (ROC), from the synthetic by-products. This study demonstrates that this ROC, after separation from sulfate ion, is utilized extensively as a sulfur source for bacterial growth. The products of desulfonation are expected to be biodegradable.
Reference:	Mampel, J., Hitzer, T., Ritter, A. and Cook, A.M. 1998. Desulfonation of biotransformation products from commercial linear alkylbenzene sulfonates. Environ. Toxicol. Chem. 17:1960-1963.
Reliability:	2 Valid with restrictions
(s)	
Type.	aerobic []: anaerobic [X]
Inoculum.	adapted [1], mon-adapted [1] other [X] lake sediments
Concentration.	20 100 and 200 mg/L
Medium:	Water
Regults:	Degradation occurred under anaerobic conditions when exposed to
Results.	inoculum obtained from lake sediments. In addition, inocula that were found in aerobic environments such as compost and activated sludge from a wastewater treatment plant also showed capability of anaerobic degradation of LAS.
Method:	Tests were performed in batch serum vials under anaerobic conditions. The vials were filled with the appropriate pH 7 medium, autoclaved at 140°C for 30 minutes, and inoculated with 5 to 10% of the respective inocula. Inocula originated from several different natural environments and from anaerobic reactors. LAS was added at three different concentrations (20, 100, and 200 mg/L) plus three sets of controls, all in triplicate. Incubation time was 2 months.
GLP:	Yes [] No [] ? [X]
Test Substance:Mixture	of LAS with an alkyl chain length of 9 to 13 units; likely average alkyl chain length = $C_{11.6}$
Remarks:	This paper indicates qualitatively that LAS undergoes anaerobic degradation, but no quantitative results are presented.
Reference:	Angelidaki, I., Mogenen, A.S. and Ahring, B.K. 2000b. Degradation of organic contaminants found in organic waste. Biodegradation. 11:377-383.
Reliability:	2 Valid with restrictions
(t)	
Type:	aerobic []: anaerobic [X]
I ypc.	Activited sludge
Concentration:	100 mg/I
Mealum:	water []; water-sediment []; soli []; sewage treatment [X]
Degradation:	Transformation of C_{12} LAS occurred under anaerobic conditions. The
Methods:	degree of transformation varied between 14 to 25%. Two lab-scale continuous stirred tank reactors (CSTR) were set up with automatic, semi-continuous feeding and were run under mesophilic conditions (37°C) with a hydraulic retention time of 15 days. The reactors were started with anaerobic stabilizer sewage sludge and operated for several months before the experiment started. The feed was diluted
	_

GLP: Tast Substance: C I A	sludge at a total solids concentration of 20 g TS/L. The sludge was spiked with C_{12} LAS at a concentration of 100 mg/L and the two reactors were operated similarly for 36 days. After this period, the LAS concentration in reactor 1 was increased to 268 mg/L, while for reactor 2 the influent TS was decreased to 11.4 g TS/L, and both reactors continued to operate for a total of 90 days (including the original 36 days). Yes [] No [] ? [X]
Test Substance: C_{12} LA	S (pure homologue)
Remarks:	A clear correlation was shown between degradation of organic matter contained in the sludge and anaerobic degradation of LAS, giving an increase in transformation with the higher the reduction of organic matter. Transformation was limited by bioavailability due to sorption of LAS (i.e., only the bioavailable fraction of LAS is transformed by anaerobic digestion). When the reduction degree of the organic matter increased from 22% to 28%, the transformation degree of C ₁₂ LAS increased from 14% to 20%. Decreasing the total solids concentration of the influent sludge or increasing the spiked concentration of C ₁₂ LAS did not significantly alter the degree of LAS transformation
Reference:	Angelidaki, I., Haagensen, F. and Ahring, B.K. 2000a. Anaerobic transformation of LAS in continuous stirred tank reactors treating sewage
Reliability:	2 Valid with restrictions
(u)	
Type:	aerobic [X]; anaerobic []
Medium	coastal sea water
Concentration:	5 mg/L related to test substance
Results:	LAS primary degradation half-lives ranged from 3.4 to 13.8 days, with 4-9 days being the most frequent values.
Method:	Coastal sea water from the Mediterranean Sea was collected from three areas in Spain (Barceloneta, Ebro delta, and Sant Feliu de Guixols, Girona). Samples of 1.5- L were placed in 3-L flasks and incubated in the dark at 20°C with orbital shaking (100 rpm) for 30 days. Viable bacteria were determined by plate counts on marine agar media, while total bacteria were determined by flow cytometry after SYTO-13 staining. LAS degradation was monitored by HPLC. A reference substance was not used. LAS quantification was based on an external standard.
GLP:	Yes [] No []? [X]
Test Substance:C ₁₀₋₁₄ L	AS, activity 66.62%; average alkyl chain length = C_{117}
Remarks:	In most cases, sea water samples showed a similar evolution of bacterioplankton over time, characterized by three phases: (a) a progressive increase in bacterial density; (b) a later decrease; and (c) a fluctuating stationary phase. Bacterioplankton degraded the LAS by growing to populations with a high percentage of viable bacteria. The bacteria were readily grazed by protozoa, preventing anomalous high bacterial growth and ensuring the later channeling of LAS carbon to upper trophic levels.
Reference:	Vives-Rego, J., Lopez-Amoros, R., Guindulain, T., Garcia, M.T., Comas, J., and Sanchez-Leal, J. 2000. Microbial aspects of linear alkylbenzene sulfonate degradation in coastal water. Journal of Surfactants and Detergents. 3:303-308.
Reliability:	2 Valid with restrictions

(v)	
Type: Method:	Respirometer Degradation of LAS in Ohio River water collected below the discharge of a municipal wastewater treatment plant (Muddy Creek, OH) was measured in an electrolytic respirometer. Background LAS concentrations were less than 0.5 mg/L. Oxygen consumption over time was determined at five LAS concentrations (5, 10, 20, 40, and 80 mg/L) plus a control until plateau values were reached. The maximum initial rates of oxygen
Results:	uptake were calculated based on methods described in Larson and Perry (1981). LAS degradation was not affected in river water until the LAS concentration exceeded 10 mg/L. The degradation was partially affected at 20 mg/L but was not completely inhibited until 40 mg/L.
Substance: Remarks:	LAS; average chain length $C_{11.6}$. The level at which inhibition of degradation was complete (40 mg/L) is significantly higher than the levels observed in model ecosystem studies conducted by these researchers [see 4.7 (h) and (i)].
Reference:	 Larson, R.J. and Maki, A.W. 1982. Effect of LAS on the structure and function of microbial communities in model ecosystems. Aquatic Toxicology and Hazard Assessment: Fifth Conference, ASTM STP 766, Pearson, J.G., Foster, R.B., and Bishop, W.E., Eds., American Society for Testing and Materials, pp. 120-136. Maki, A.W. 1981. A laboratory model ecosystem approach to environmental fate and effects studies. Unpublished Internal Report, Environmental Safety Department Procter & Gamble Company, Cincinnati, Ohio. Larson, R.J. and Perry, R.L. 1981. Water Research 15:697-702.
Reliability:	2 Valid with restrictions
(w) Type: Substance: Remarks:	aerobic [X] ; anaerobic [] LAS The biodegradation of LAS has been thoroughly studied for its primary and total degradation and catabolism. It is mineralized biologically to form carbon dioxide, water and sulphate. Using UV spectroscopic analysis, Swisher (1987) and others showed the aromatic ring to be degradable up to 80%. Using the more reliable tracer technique with ¹⁴ C- ring labelled LAS, it was determined that degradation of the ring is predominantly between 50 and 80%. Further studies have shown that LAS degradation proceeds through oxidative conversion of the methyl groups of the alkyl chain into a carboxyl group (ω -oxidation), oxidative shortening of the alkyl chain by 2-carbon units (β -oxidation), oxidative ring splitting, then cleavage of the carbon-sulfur bond. This process forms sulfophenyl carboxylates (SPCs) as biodegradation intermediates. The first detectable degradation product of LAS is ω -carboxylate. For example, Huddleston and Allred (1963) detected sulfophenyl decanoic acid as a catabolite of 2-benzenedecasulfonate. Oxidative degradation of the alkyl chain begins as soon as LAS has been converted into sulfophenyl carboxylic acid. The principal degradation pathway is β -oxidation. The rate of biodegradation is inversely related to the distance between the terminal alkyl-methyl group and the point of benzene ring attachment.

Simple branching does not impair the oxidation of alkylbenzene, though				
more complex branching does decrease the rate.				
1) Swisher, R.D. 1987. Surfactant Biodegradation, second edition.				
Surfactant Science Series, Volume 18. Marcel Dekker, Inc. New York.				
2) Schoeberl, P. 1989. Basic principles of LAS biodegradation. Tensid				
Surf. Detergents 26:86-94.				
3) Huddleston, R.L. and Allred, R.C. 1963. Microbial oxidation of				
sulfonated alkylbenzenes. Dev. Ind. Microbiol. 4:24-38.				
2 Valid with restrictions				

(x) Type:

Method:

aerobic [X]; anaerobic [] Dialkyltetralin sulfonates (DATS) and LAS with single methyl branching on the alkyl chains (iso-LAS) are minor components in commercial LAS. In this study, DATS and iso-IAS were synthesized and exposed to simulated activated sludge, soil, and receiving water environments. In addition, the effluents coming from activated sludge treatment, which contained biodegradation intermediates, were exposed to simulated receiving water environments. Radiolabeled LAS, DATS and iso-LAS were used and all samples were analyzed using chemical-specific HPLC procedures. Surface soils were collected at three locations to represent "pristine" soil, sludge-amended soil, and gray water contaminated soil from the top of a percolation bed that receives surface applications of laundry water from a Laundromat. All samples were screened to remove vegetation, rocks and debris, and mixed with a mineral salts medium containing the test substance. Sediment samples were collected from the upper inch of a small stream that received effluent from a domestic wastewater treatment plant. Periphyton samples were collected as rocks coated with heavy growth from the same stream locations as the water and sediment samples. Each test system consisted of duplicate test flasks and a control flask. Tests lasted at least 30 days. For assessing biodegradation, the porous pot method was used in a simulated wastewater activated sludge modified from ASTM test method E1798-96. A 21-day acclimation phase was followed by a 15-day test phase in which radioactivities in C02, liquids and solids, and effluent total suspended solids and COD were determined each day. Radiochemical recoveries for the porous pot test were calculated. For the die-away tests with porous pot effluents, the combined effluents from individual units were tested for mineralization of radiolabeled parent and intermediate compounds. All tests were run at least 30 days and the radioactivities measured at the end of each test.

Results: Results indicate that radiolabeled DATS and iso-LAS is mineralized by indigenous microbial populations in laboratory simulations of aquatic and soil environments. Half-lives ranged from 2 to 20 days. In addition, upon exposure to laboratory activated sludge treatment, most iso-LAS compounds showed >98% parent compound removal, extensive mineralization (>50%), and 79-90% ultimate biodegradation. Activated sludge treatment of DATS resulted in >98% removal, 3-12% ultimate biodegradation, and apparent formation of carboxylated biodegradation intermediates that accounted for 88-97% of the original material. These intermediatel continued to mineralize in simulated receiving water and soil

Test Substances:	environments at rates similar to that of sulfophenyl carboxylate (SPC) intermediates of a standard LAS. ¹⁴ C-benzene ring labeled C_{12} LAS (97.5% radiochemical purity); ¹⁴ C-benzene ring labeled iso-LAS of the following types (IA, 97.8% purity; IB, 77.6% purity; IIA, 94.7% purity; IIB, 97.5% purity); ¹⁴ C-benzene ring labeled DATS (97.3% purity), plus the non-labeled versions of the same.
Reference:	Nielsen, A.M., Britton, L.N., Beall, C.E., McCormick, T.P. and Russell, G.L. 1997. Biodegradation of coproducts of commercial linear alkylbenzene sulfonate. Environ. Sci. Technol. 31:3397-3404.
Reliability:	2 Valid with restrictions
(y) T	
Type: Method:	aerobic [X]; anaerobic [] OECD 301E. The study was designed to investigate the biodegradation of a relatively high iso-branched form of commercial LAS. The test was a prolonged batch-biodegradation experiment in which the material is kept "alive" for 80 days and in which the test compound present in a mineral salts medium is the sole carbon source. An enriched level of bacterial biomass, three times the amount recommended, was added at the test start using an inoculum obtained from the settled supernatant slurry solution of a fertile soil, without any previous exposure to the test compound. LAS was maintained by adding about 0 mg/L of fresh substance every four days for 80 days. After 80 days the test solution was sampled, centrifuged, sterilized with HgCl ₂ solution and analyzed with a chemical specific HPLC method with fluorescence detection.
Results:	Results indicate a residual LAS amount of 1.5 mg/L and SPC intermediate amount of 28.7 mg/L at the end of the 80 day study. Four distinct SPCs originating from the linear components of LAS were formed from the biodegradation experiment, and made up most of the organic residue. No evidence of structures related to the iso-branched material was found in the residue, therefore no accumulation of these materials is indicated. The iso-branched component of LAS and the corresponding SPCs mineralized at rates as fast as the linear components.
Test Substances:	Commercial LAS (HF type) with a C_{10} - C_{13} alkyl chain and a linearity of about 93%, with a low DATS content (<0.5%) and a relatively high iso-LAS content (6.5%).
Reference:	Cavalli, L., Cassani, G., Lazzarin, M., Maraschin, C., Nucci, G., and Valtorta, L. 1996. Iso-branching of linear alkylbenzene sulphonate (LAS). Tenside Surf. Det. 33:393-398.
Reliability:	2 Valid with restrictions
(z) Type: Inoculum: Concentration: Medium: Degradation: Results: Kinetic:	<pre>aerobic [X]; anaerobic [] adapted []; non-adapted [X]; activated sludge 34.3 mg/L related to COD []; DOC [X] test substance [] water [X]; water-sediment []; soil []; sewage treatment [] 85% after 29 days readily biodeg. [X]; inherently biodeg. []; under test condition no biodegradation observed [], other [] 0 day = -1% 2 day = -2% 5 day = 22%</pre>

	9 day = 52%
	12 day = 70%
	14 day = 70%
	21 day = 78%
	28 day = 83%
	29 day = 85%
Method:	OECD Test Guideline 301B and EC Directive 92/69/EEC C.4-C.
	Modified Sturm Test The test substance was added to a defined liquid
	mineral medium which was inoclulated with an activated-sludge inoculum
	and aerated at 19.7-21.9°C (mean 21.1°C). The inoculum used was
	activated non-adapted sludge from the Marl-Ost municipal sewage
	treatment plant. The inoculum had a bacterial count of 81 x 10 ⁴ CFU/mL
	as determined by the Koch pour-plate method. The CO_2 released was
	bound in the form of sodium carbonate in sodium hydroxide solution.
	Samples were collected and analyzed in duplicate for bound CO_2 by TIC
	analysis after 0, 2, 5, 9, 12, 14, 21, 28 and 29 days. Sodium benzoate was
	used as a suitable control substance to monitor the activity of the
	inoculum. On the 29 day, residual dissolved CO_2 was expelled by
CLD	V_{ex} [V] No [1, 2,]
ULP. Test substances	$I \in [A] \text{NO} [] (] (] More than A = 265 \text{ WEL} (CAS \# 69411, 20, 2) (] AS \text{every solution}$
Test substance.	chain length = $C_{11.6}$; Activity: 65%
Remarks:	LAS is readily biodegradable. The 10-day window criterion was fulfilled.
	The control substance (sodium benzoate) showed 89% degradation after
	29 days. This is a key study for ready biodegradability (see SIAR Table
	4).
Reference:	Enste-Diefenbach, R 2002. Marlon A 365 WEL 6859: Determination of
	biodegradability in the modified Sturm test. Infracor GmbH Analytical
	Tehcnical Services, Report ST-204/02.
Reliability:	1 Valid without restriction

3.6 BOD₅, COD OR RATIO BOD₅/COD

BOD ₅			
Method:	DIN 38H03, Part 1. Bestimmung des biochemischen Sauerstoffbedarfs i		
	5 Tagen nach den Verduennungsprinzip.		
Value:	<10 mg O ₂ /g for both Marlon A 350 and Marlon A 375		
GLP:	Yes [] No [] ? [X]		
COD			
Method:	DIN 38H03, Part 1		
Values:	1151 and 1760 mg O_2/g for Marlon A 350 and Marlon A 375, respectively.		
GLP:	Yes [] No [] ? [X]		
Ratio BOD ₅ /COD:	< 0.005		
Remarks:	Marlon A 350 (C ₁₀₋₁₃ LAS, average chain length = 11.6, 50% a.i.) Marlon A 375 (C ₁₀₋₁₃ LAS, average chain length = 11.6, 75% a.i.) The extended term BOD determinations yield 60 to 70% of COD. The substance is degradable.		

European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., Reference: sodium salts (CAS #68411-30-3). Year 2000 CD-ROM edition, citing data by Huels AG Marl. Reliability: 4 Not assignable

3.7 **BIOACCUMULATION**

(a) Pimephales promelas (fish, fresh water) Species: Exposure period: 48, 168, 192 hours Temperature: Per Protocol Concentration: 2.7 and 4.1 μ M BCF: Values of Steady-State Bioconcentration Factor (BCFss) and Average Length of Alkyl Chain $(n_{C,Av})$ are shown in the following table.

expt	comp*	BCF _{ss}	n _{C,Av}
	C10-2	1 7	
	$C_{10} = C_{11} - 2$	5.8	
A	C ₁₂ -2	47.6	10.8
	C ₁₃ -2	353.8	
	C ₁₁ -5	6.1	
D	C ₁₂ -2	99.1	117
D	C ₁₂ -5	10.0	11./
	C ₁₃ -5	34.0	
	C ₁₁ -5	9.8	
C	C ₁₂ -2	168.4	11.4
C	C ₁₂ -3	42.1	
	C ₁₂ -6	31.9	
	C ₁₀ -2	6.0	
	C ₁₁ -2	31.9	
D	C ₁₂ -2	211.5	
	C ₁₃ -2	987.2	10.6
	C ₁₀ -in	3.0	10.0
	C ₁₁ -in	9.1	
	C ₁₂ -in	29.9	
	C ₁₃ -in	112.4	

*In the format C_n-m, n and m are the length of the alkyl chain and the position at which the sulfophenyl moiety is substituted to the alkyl chain, respectively.

Elimination:	Yes [X] No []?[]
Method:	OECD 305 E. The exposure phase in Experiment A was 48-hours. The
	exposure phase in Experiments B-D ranged from 168 to 192 hours. Due
	to the rapid equilibrium demonstrated in these studies, a longer exposure
	period was not needed. Fish were then transferred to untreated water for
	the depuration phase (duration not stated).
Type of test:	calculated []; measured [X]
	static []; semi-static []; flow-through [X]
GLP:	Yes [] No [] ? [X]
Test substance:	LAS (C_{10-13}), tested individually and as mixtures, activity: >97.4%
August 11, 2005	67

Remarks: As shown in the table, BCF values ranged between 2-1000 L/kg. Experiments A, B and D showed that BCFs increase with increasing alkyl chain length for a given isomer. In addition, the results of Experiments B and C demonstrate that the closer the p-sulfophenyl moiety is positioned to the terminal carbon of the alkyl chain, the higher the BCF. However, alkyl chain length has a much bigger effect than does the phenyl position. To address differences in composition of mixtures, bioconcentration potential was calculated for a mixture typical of LAS in European detergent formulations (C₁₀ 12%, C₁₁ 29%, C₁₂ 34%, C₁₃ 24%; average alkyl chain length = $C_{11.6}$) and a mixture typical of LAS in filtered Mississippi river water (C₁₀ 45%, C₁₁ 23%, C₁₂ 23%, C₁₃ 2%; average chain length = $C_{10.8}$), using BCF values for the individual components. This calculation of BCF for the typical mixtures was done using the following equation developed in the above testing:

$$(\Sigma C_{f,i} / \Sigma C_{w,i})_{rel} = \Sigma (\phi_{i,w} \cdot BCF_{i,rel})$$

The BCFs were 87 L/kg for a standard mixture typical of LAS in European detergent formulations (average alkyl chain length = $C_{11.6}$) and 22 L/kg for a representative environmental sample (filtered Mississippi river water, average alkyl chain length = $C_{10.8}$, indicating that the bioconcentration potential of LAS is low and is decreased by environmental processes such as biodegradation and absorption, which reduce aquatic concentrations.

Reference: Tolls, J., Haller, M., DeGraaf, I., Thijssenk, M.A.T.C. and Sijm, D.T.H.M. Bioconcentration of LAS: Experimental determination and 1997. extrapolation to environmental mixtures. Environ. Sci. Technol. 31:3426-3431. 2 Valid with restrictions

D			
12.0	10	h 1	
Ке	ня		1111/
110	ua	σ_{11}	
-		-	- 1

(h)

(0)	
Species:	Lepomis macrochirus
Exposure Period:	21 days
Temperature:	17 ⁺ /-1°C
Concentration:	0.5 mg/L
BCF:	104 (whole body); 36 (muscle)
Elimination:	Yes
Method:	Bluegill sunfish (avg wt. 4.0 g; avg length 68 mm) were placed in a 60 liter aquarium (375 fish total) and maintained for 21 days. A second aquarium held 100 control fish. Fish were fed daily with a dry pelleted trout chow ration of approximately 2% of body weight. Water samples were removed periodically for radiometric analysis of ¹⁴ C-labeled LAS. Four fish were removed on each of days 1, 2, 3, 5, 7, 9, 11 and 14 for radiometric analysis.
Type of test:	calculated []; measured []; static []; semi-static []; flow-through [X]
GLP:	Yes [] No [] ? [X]
Test substance:	C_{10-13} LAS (CAS #68411-30-3) with the following alkyl chain length distribution: C_{11} 45%, C_{12} 36.5%, C_{13} 18.5%. Average chain length was 11.7 and molecular weight was 344.
Remarks:	The site of greatest concentration was the gall bladder with a BCF of 5000, based on total radiolabeled materials. The BCFs for liver, gills and viscera, remaining carcass, and blood ranged from 64 to 283. Clearance

	of radiolabeled materials was rapid with half-lives of 2 to 5 days.
	However, no quantitative conclusions specific to LAS can be drawn from
	these data, as total radiolabeled materials were measured, and these likely
	include LAS metabolites.
Reference:	Kimerle, R.A., Macek, K.J., Sleight, B.H. and Burrows, M.E. 1981.
	Bioconcentration of linear alkylbenzene sulfonate (LAS) in bluegill
	(Lepomis macrochirus). Wat. Res. 15:251-256.
Reliability:	2 Valid with restrictions

3.8 ADDITIONAL REMARKS

A. Sewage treatment

(a)	
Results:	LAS removal in sewers due to biodegradation can reach as high as 50% of the total LAS load when the sewer system is properly aerated.
Method:	Integrated composite samples were collected in November and December 1988 from the sewer system of Estepona (Malaga), Spain. LAS was analyzed using a specific HPLC technique.
Remarks:	This study demonstrates that significant biodegradation of LAS occurs prior to reaching wastewater treatment plants. Additional removal (up to >95%) occurs in the plants themselves.
Reference:	Moreno, A., de Ferrer, J. and Berna, J.L. 1990. Biodegradability of LAS in a sewer system. Tenside Surf. Det. 27:312-315.
Reliability:	2 Valid with restrictions
(b)	
Results:	The average removal rate for LAS in activated sludge treatment was > 99%. A lower and more variable rate was observed in trickling filter treatment plants with an average removal of 82% for LAS.
Remarks:	Samples were collected from six trickling filter and four activated sludge treatment plants located in the midwestern United States.
Reference:	McAvoy, D.C., Dyer, S.D., Fendinger, N.J., Eckhoff, W.S., Lawrence, D.L. and Begley, W.M. 1998. Removal of alcohol ethoxylates, alkyl ethoxylate sulfates, and linear alkylbenzene sulfonates in wastewater treatment. Environ. Toxicol. Chem. 17:1705-1711.
Reliability:	2 Valid with restrictions
(c)	
Results:	The model predicted average removal of LAS from wastewater treatment plants is 99.2%. Predicted 90 th -percentile concentrations at 1,000 m downstream from the sewage outfall, based on actual measured raw sewage concentrations and actual measured effluent calculations, ranged from 3.7 to 9.2 μ g/L for different predicted instream removal rates.
Method:	Modeling was conducted to predict the 90 th -percentile environmental concentration (PEC) of LAS and other detergent substances in aquatic environments in the Netherlands. Inputs included emissions data, prediction of raw sewage concentration and initial material characterization. Model predictions included the removal of LAS in wastewater treatment plants, concentrations in surface waters, and prediction of the 90 th -percentile concentrations.
Remarks:	The authors emphasize that to provide a fate assessment adequate for regulatory purposes, a need clearly exists for a fundamental interplay between monitoring, laboratory data, and these predictive models. This study is part of an extensive monitoring program executed jointly by the Dutch Soap Association (NVZ) and the Dutch Ministry of Housing, Spatial Planning and the Environment (VROM). Monitoring data from this are grown son by found in Matthias et al. 1000
--------------	---
Reference:	Feijtel, T.C.J., Struijs, J., and Matthijs, E. 1999b. Exposure modeling of detergent surfactants – Prediction of 90 th -percentile concentrations in the Netherlands. Environmental Toxicology and Chemistry 18:2645-2652.
Reliability:	2 Valid with restrictions
(d)	
Results:	The average concentration of LAS in the treated sewage of the sum wastewater treatment plants was 39 μ g/L. The average total removal of LAS was 99.2%.
Method:	Twenty four hour flow proportional samples of raw, settled, and treated sewage were collected by automatic samples during three consecutive days at seven sewage treatment plants in the Netherlands. All samples were collected between April and July 1994 and analyzed for traditional sewage treatment plant water quality parameters. Samples for the analysis of LAS and other surfactants were taken every 15 minutes (hourly composites) using a time proportional automatic sampler. The LAS in these samples was analyzed using an HPLC method with fluorescence detection.
Remarks:	This study is part of an extensive monitoring program executed jointly by the Dutch Soap Association (NVZ) and the Dutch Ministry of Housing, Spatial Planning and the Environment (VROM). The authors indicate that field studies suggest that in-sewer removal can play a significant role in reducing the concentrations of surfactants entering the sewage treatment plant
Reference:	Matthijs, E., Holt, M.S., Kiewiet, A., and Rijs, G.B.J. 1999. Environmental monitoring for linear alkylbenzene sulfonate, alcohol ethoxylate, alcohol ethoxy sulfate, alcohol sulfate, and soap. Environmental Toxicology and Chemistry 18:2634-2644.
Reliability:	2 Valid with restrictions
(e)	
Methods:	LAS was monitored seasonally for one year (winter, spring, summer) in a small river in Spain receiving untreated sewage from a non-industrial village (Caserras). Sampling was carried out during November 1994, May 1995 and July 1995. Grab samples were collected in the morning, afternoon and evening at five sampling sites representing the raw sewage discharge, a pre-discharge location on the river, and three downstream locations on the river (1.5, 3.0 and 4.8 km downstream of the discharge).
Results:	Seasonal differences were observed in biodegradation, with total LAS removals (dissolved and adsorbed) at 4.8 km downstream of 31.8%, 95.5% and 98.3% for winter, spring and summer respectively.
Remarks:	The seasonal differences in biodegradation are explained by hydraulic conditions. River flow rates are much greater in winter (75 m ³ /min) versus spring ($4.5 \text{ m}^3/\text{min}$) and summer ($0.2 \text{ m}^3/\text{min}$), which results in a much reduced hydraulic retention time (and thus less contact time for

	biodegradation) in winter of 1.6 hrs compared to 26.6 hrs in spring and 25 days in summer. Overall, even in situations of direct discharge of untreated sewage, LAS biodegradation of >98% can be expected provided that the receiving water stream has adequate hydraulic conditions.
Reference:	de Ferrer, J., Moreno, A., Vaquero, M.T. and Comellas, L. 1997. Monitoring of LAS in direct discharge situations. Tens. Surfactants Det.
Reliability:	34:278-283. 2 Valid with restrictions
(f)	
Results:	LAS removal of 98-99% and biodegradation of 80-84% was observed. Sulfophenyl carboxylates (SPC) were found only in water and not the absorbed phases (sludge).
Remarks:	This study was conducted to specifically study LAS biodegradation in real WWTP conditions in Italy. LAS data was obtained by HPLC of influent, effluent, dissolved waters and sludges to reach a complete mass balance.
Reference:	 Cavalli, L., Gellera, A., Lazzarin, A., Nucci, G.C., Romano, P., Ranzani, M. and Lorenzi, E. 1991. Linear alkylbenzene sulphonate removal and biodegradation in a metropolitan plant for water treatment. Riv. Ital. Sostanze Grasse 68:75-81. Cavalli, L., Gellera, A. and Landone, A. 1993. LAS removal and biodegradation in a wastewater treatment plant. Environmental Taviaslogy and Chemistry 12:1777, 1788
Reliability:	2 Valid with restrictions

B. Other information

(a)

Remarks:

A significant number of additional literature articles report data on the environmental fate of LAS. An additional bibliography of literature citations for LAS can be found in an Appendix to this dossier.

(b)

Type of Measurement: Background [X]; At contaminated site []; Other [] Medium: soil Remarks: Where surfactant and hydrophobic organic compounds (HOCs) co-exist in soil-water systems there are a number of possible interactions which can occur simultaneously: 1) distribution of surfactant between monomeric, hemimicellar and miscellar forms, 2) competition for hydrophobic adsorption sites between the surfactant and HOC and 3) partitioning of HOC among soil hydrophobic adsorption sites, surfactant micelles and hemimicelles. The interaction of HOCs with surfactant monomers is usually very weak and insignificant. At concentrations where micelles and hemimicelles are present interactions can take place. Sorbed HOCs can be solubilised by free micelles, resulting in mobilisation. HOCs in solution are in equilibria between sorption onto hydrophobic adsorptive sites on the soil, partitioning into hemimicelles - both resulting in immobilisation, and partitioning into free micelles. Whether the HOCs are previously sorbed onto soil or are in solution, partitioning into micelles, hence mobilisation, is favoured by increasing surfactant concentration. A model has been put forward describing the

effect of non-ionic surfactant on the distribution of HOC in a soil-water system. In simple terms the model illustrates that sorbed surfactant molecules tend to increase HOC sorption onto soil by increasing its fractional organic carbon content, and free surfactant tends to decrease sorption by increasing the apparent aqueous solubility of the HOC. The biodegradation of HOCs in soil can be enhanced by surfactants due to enhanced solubility in the presence of micelles. In some cases however, biodegradation appears to be inhibited by micelles forming a barrier to the degrading organism. Any such inhibition is unlikely to be prolonged due to the biodegradable nature of most modern surfactants. In fact, it is very unlikely that micelles would be present in sludgeamended soils due to the low concentration of surfactants.

Although there is evidence that surfactants can effect the fate and behaviour of HOCs in soil, the potential for detergent ingredients to cause significant effects is limited due to the relatively low concentrations found compared with critical micelle concentrations (CMCs). In addition, the effective CMC in environments such as soil and sediments is generally much higher than in clean water systems. Typical soil concentrations of LAS, the most heavily used surfactant in domestic detergents, are significantly lower than those required to produce micelles in pore water. Therefore, it is unlikely that surfactants present in domestic detergents will contribute significantly to the mobilisation of HOCs in sludge-amended soil.

Reference: Haigh, S.D. 1996. A review of the interaction of surfactants with organic contaminants in soil. The Science of the Total Environment 185:161-170.

4. <u>ECOTOXICITY</u>

4.1 ACUTE/PROLONGED TOXICITY TO FISH

(a) Type of Test: static []; semi-static []; flow-through [X] Open-system [X]; closed-system [] Species: Lepomis macrochirus (Fish, fresh water) **Exposure Period**: 96 hours $LC_{50} = 1.67 \text{ mg/L}$ Results: Analytic Monitoring: Yes [X]; No []; ? [] Method: USEPA (1975) Stock solutions were made up in deionized water without the use of a solvent and metered into diluter chambers by peristaltic pump. Mortality was analyzed by four methods: (a) the toxic unit (TU) concept, (b) the additive index, (c) concentration addition, and (d) response addition. GLP: Yes []; No [X]; ? [] C11.8 LAS; Average molecular weight 345; 27.3% active; Alkyl chain Test Substance: Composition: C₁₀ 9.5%, C₁₁ 29.2%, C₁₂ 37.7%, C₁₃ 19.0%, C₁₄ 4.9% Remarks: Average size of individual fish 1.1 g, mean standard length 4.2 cm; water hardness 137 mg/L Ca CO₃; temperature $20 \pm 2^{\circ}$ C; dissolved oxygen 8.4-9.6 mg/L; pH 7.3-8.1. Ten randomly selected fish were exposed to each of the five concentrations and the control. A 16:8 (light:dark) photoperiod was maintained. Fish were not fed during the study. Mortality was recorded at 1, 3, and 5 hours after test initiation and then daily until test termination. Samples were collected at the beginning and end of the study and analyzed for the test substance. Results reported are mean measured concentrations. The LC50 value reported represents the lowest value for this species. In addition to the studies conducted on LAS, the anionic LAS was also tested in binary and ternary equitoxic or equimolar mixtures with non-ionic C_{14-15} linear alkyl ethoxylate (AE) and cationic C₁₂₋₁₄ MDAC. These mixture results are not reported in this robust summary. This is a key study for aquatic toxicity to fish (see SIAR Table 10). Reference: Lewis, M.A. and Perry, R.L. 1981. Acute toxicities of equimolar and equitoxic surfactant mixtures to Daphnia magna and Lepomis macrochirus. Aquatic Toxicology and Hazard Assessment: Fourth Conference, ASTM STP 737, D.R. Branson and K.L. Dickson, Eds., American Society for Testing and Materials, pp. 402-418. 2 Valid with restrictions. The studies are very well documented in this Reliability: peer-reviewed publication. (b) Species: Lepomis macrochirus and Pimephales promelas Results: LC₅₀ values ranged from 1.67 to 7.7 mg/L for L. macrochirus (10 records) LC_{50} value for *P. promelas* = 4.1 mg/L (1 record) See study (q) below for robust summary C₁₀₋₁₃LAS (CAS #68411-30-3) Test Substance: Remarks: A total of 18 fish studies for these two species were reviewed by HERA in 2004. Seven of these studies were rejected because the test material was not commercial LAS, the study deviated significantly from standard protocols, or non-standard endpoints were measured. The remaining

	eleven studies were evaluated for reliability and the results reflect the
	range of acute LC ₅₀ values obtained for the most commonly tested fish
	species. These studies are tabulated and discussed further in the SIAR and
	SIAP in a weight-of-evidence approach. A robust summary for the study
	with the lowest LC ₅₀ value was prepared (see Lewis and Perry 1981
	above).
Reference:	HERA-LAS team, May 2004; see SIAR, Annex 2.
Reliability:	4 Not assignable. This study is given a reliability score of 4 because
	it is a summary evaluation of a series of studies conducted by other
	researchers.

(c)				
Species:	Lepomis macrochirus			
Results:	$L\hat{C}_{50} = 3.0 \text{ mg/L}$ (geometric mean of 88 records)			
Test Substance: C10-14 LA	AS (all LAS in range, including data for individual homologues)			
Remarks:	Mean LC ₅₀ for bluegill sunfish was derived from a total of 88 records			
	compiled from the BKH (1993) literature review.			
Reference:	van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J.,			
	Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect			
	concentrations and risk characterization of four surfactants: LAS, AE,			
	AES, and soap, Environ. Toxicol. Chem. 18:2653-2663.			
Reliability:	4 This study was given a reliability score of 4 because the original reports			
	reviewed by the authors were not directly reviewed in the compilation of			
	this robust summary.			

(d)

(4)	
Species:	Pimephales promelas
Results:	$LC_{50} = 3.2 \text{ mg/L}$ (geometric mean of 35 records)
Test Substance:C ₁₀₋₁₄ L	AS (all LAS in range, including data for individual homologues)
Remarks:	Mean LC ₅₀ for fathead minnow was derived from a total of 35 records
	compiled from the BKH (1993) literature review. The range of LC_{50}
	values (0.40-100 mg/L) is very large due to the range of materials tested
	(including many materials not representative of commercial LAS) and the
	differences in test design (not necessarily following standard guidelines).
	It is unclear which values within the range refer to the commercial LAS
	products and the individual records are not available for validation.
Reference:	van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J.,
	Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect
	concentrations and risk characterization of four surfactants: LAS, AE,
	AES, and soap. Environ. Toxicol. Chem. 18:2653-2663.
Reliability [.]	4 This study was given a reliability score of 4 because the original reports
i condonite j :	reviewed by the authors were not directly reviewed in the compilation of
	this robust summary
	this foodot summary.

(e)			
Species:	Leuciscus idus melanotus		
Results:	$LC_{50} = 2.9 \text{ mg/L}$ (geometric mean of 11 records)		
Test Substance: C10-14 LA	AS (all LAS in range, including data for individual homologues)		
Remarks:	Mean LC_{50} for golden orfe was derived from a total of 11 records		
compiled from the BKH (1993) literature review.			
Reference:	van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J.,		
	Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect		
Remarks: Reference:	Mean LC ₅₀ for golden orfe was derived from a total of 11 records compiled from the BKH (1993) literature review. van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J., Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect		

Reliability:	 concentrations and risk characterization of four surfactants: LAS, AE, AES, and soap, Environ. Toxicol. Chem. 18:2653-2663. 4 This study was given a reliability score of 4 because the original reports reviewed by the authors were not directly reviewed in the compilation of this robust summary.
(f)	
Species:	Carassius auratus (goldfish) Oncorhynchus mykiss (rainbow trout) Oryzias latipes (medaka)
Results:	Poecilia reticulata (guppy) LC_{50} (<i>C. auratus</i>) = 9.5 mg/L (46 records) LC_{50} (<i>O. mykiss</i>) = 3.0 mg/L (10 records) LC_{50} (<i>O. latipes</i>) = 13 mg/L (5 records) LC_{50} (<i>P. reticulata</i>) = 3.8 mg/L (9 records)
Test Substance: C10-14 LA	AS (all LAS in range, including data for individual homologues)
Remarks:	Geometric mean LC_{50} values for the number of records listed for each species. The interspecies variation decreases considerably when the geometric mean value per species is calculated
Reference:	van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J., Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect concentrations and risk characterization of four surfactants: LAS, AE,
Reliability:	AES, and soap. Environ. Toxicol. Chem. 18:2653-2663. 4 This study was given a reliability score of 4 because the original reports reviewed by the authors were not directly reviewed in the compilation of this robust summary.
(g)	
Species:	Fish species (all marine)
Results:	$LC_{50} = 1.58 \text{ mg/L} (6 \text{ records}; SD = 0.16)$
Test Substance:LAS; av	verage alkyl chain length C _{11.7-12.0}
Remarks:	LC_{50} is geometric mean of 6 records compiled from literature reviews. Geometric mean LC_{50} for all taxa (36 records; SD = 0.79) was 4.36 mg/L.
Reference:	Temara, A., Carr, G., Webb, S., Versteeg, D., and Feijtel, T.C.J. 2001. Marine risk assessment: Linear alkylbenzensulphonates (LAS) in the North Sea Mar Poll Bulletin 42:635-642
Reliability:	4 This study was given a reliability score of 4 because the original reports reviewed by the authors were not directly reviewed in the compilation of this robust summary.
(h) (Zebra fish)	
Type of test:	<pre>static []; semi-static []; flow-through [X]; other[] open-system [X]; closed-system []</pre>
Species:	Brachydanio rerio (Fish, fresh water)
Exposure period:	96 hour
Results:	$LC_{50} = 5.1 \text{ mg/L}$
Analytical monitoring:	Yes [] No [X] ? []
Method:	OECD Guide-line 203 "Fish, Acute Toxicity Test"
GLP:	Yes [] No [] ? [X]
Test substance:	C_{10-13} LAS (CAS #68411-30-3)

Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. The submitter (Huels AG) judged the study quality to be good. Water handware 210 ms/L CoCO at a matter diherent 25 % a left field total	
Reference:	hardness: 310 mg/L CaCO ₃ ; tap water diluent; 25 °C; adult fish tested. European Commission. 2000f. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, AT/FU/80/90.	
Reliability:	4 Not assignable. The original study was not available for review.	
(i)		
Type of test:	static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system []	
Species:	Brachydanio rerio (Fish, fresh water)	
Exposure period:	96 hour $I_{C} = 7.8 \text{ mg/I}$	
Analytical monitoring:	$LC_{50} = 7.8 \text{ mg/L}$ Ves [X] No [] 2 []	
Method [.]	ISO 7346/1-3	
GLP:	Yes [] No [X] ? []	
Test substance:	Marlon A 350 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = 11.6	
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Concentration of test substance related to MBAS. LC_0 and $LC_{100} = 5.6$ and 11 mg/L, respectively	
Reference:	European Commission. 2000b. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929).	
Reliability:	4 Not assignable. The original study was not available for review.	
(j)		
(j) Type of test:	static []; semi-static [X]; flow-through []; other []	
(j) Type of test:	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system []</pre>	
(j) Type of test: Species:	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 days</pre>	
(j) Type of test: Species: Exposure period: Posults:	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 day NOEC = 2 mg/I</pre>	
(j) Type of test: Species: Exposure period: Results:	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L</pre>	
(j) Type of test:Species: Exposure period: Results:Analytical monitoring:	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] 2 []</pre>	
(j) Type of test:Species: Exposure period: Results:Analytical monitoring: Method:	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] ? [] OECD Guide-line 204 "Fish, Prolonged Toxicity Test: 14-day Study"</pre>	
 (j) Type of test: Species: Exposure period: Results: Analytical monitoring: Method: GLP: 	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] ? [] OECD Guide-line 204 "Fish, Prolonged Toxicity Test: 14-day Study" Yes [] No [X] ? []</pre>	
 (j) Type of test: Species: Exposure period: Results: Analytical monitoring: Method: GLP: Test substance: 	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] ? [] OECD Guide-line 204 "Fish, Prolonged Toxicity Test: 14-day Study" Yes [] No [X] ? [] Marlon A 350 (CAS #68411-30-3) C₁₀₋₁₃ LAS, average alkyl chain length = 11.6</pre>	
(j) Type of test: Species: Exposure period: Results: Analytical monitoring: Method: GLP: Test substance: Remarks:	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] ? [] OECD Guide-line 204 "Fish, Prolonged Toxicity Test: 14-day Study" Yes [] No [X] ? [] Marlon A 350 (CAS #68411-30-3) C₁₀₋₁₃ LAS, average alkyl chain length = 11.6 Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Concentration of test substance related to MBAS.</pre>	
(j) Type of test: Species: Exposure period: Results: Analytical monitoring: Method: GLP: Test substance: Remarks: Reference:	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] ? [] OECD Guide-line 204 "Fish, Prolonged Toxicity Test: 14-day Study" Yes [] No [X] ? [] Marlon A 350 (CAS #68411-30-3) C₁₀₋₁₃ LAS, average alkyl chain length = 11.6 Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Concentration of test substance related to MBAS. European Commission. 2000b. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No 5929)</pre>	
(j) Type of test: Species: Exposure period: Results: Analytical monitoring: Method: GLP: Test substance: Remarks: Reference: Reliability:	static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] <i>Brachydanio rerio</i> (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] ?[] OECD Guide-line 204 "Fish, Prolonged Toxicity Test: 14-day Study" Yes [] No [X] ?[] Marlon A 350 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = 11.6 Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Concentration of test substance related to MBAS. European Commission. 2000b. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929). 4 Not assignable. The original study was not available for review.	
 (j) Type of test: Species: Exposure period: Results: Analytical monitoring: Method: GLP: Test substance: Remarks: Reference: Reliability: (k) (Rainbow trout) 	static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] <i>Brachydanio rerio</i> (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] ? [] OECD Guide-line 204 "Fish, Prolonged Toxicity Test: 14-day Study" Yes [] No [X] ? [] Marlon A 350 (CAS #68411-30-3) C ₁₀₋₁₃ LAS, average alkyl chain length = 11.6 Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Concentration of test substance related to MBAS. European Commission. 2000b. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929). 4 Not assignable. The original study was not available for review.	
 (j) Type of test: Species: Exposure period: Results: Analytical monitoring: Method: GLP: Test substance: Remarks: Reference: Reliability: (k) (Rainbow trout) Type of test: 	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] ?[] OECD Guide-line 204 "Fish, Prolonged Toxicity Test: 14-day Study" Yes [] No [X] ?[] Marlon A 350 (CAS #68411-30-3) C₁₀₋₁₃ LAS, average alkyl chain length = 11.6 Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Concentration of test substance related to MBAS. European Commission. 2000b. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929). 4 Not assignable. The original study was not available for review.</pre>	
 (j) Type of test: Species: Exposure period: Results: Analytical monitoring: Method: GLP: Test substance: Remarks: Reference: Reliability: (k) (Rainbow trout) Type of test: 	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] ?[] OECD Guide-line 204 "Fish, Prolonged Toxicity Test: 14-day Study" Yes [] No [X] ?[] Marlon A 350 (CAS #68411-30-3) C₁₀₋₁₃ LAS, average alkyl chain length = 11.6 Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Concentration of test substance related to MBAS. European Commission. 2000b. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929). 4 Not assignable. The original study was not available for review.</pre>	
 (j) Type of test: Species: Exposure period: Results: Analytical monitoring: Method: GLP: Test substance: Remarks: Reference: Reliability: (k) (Rainbow trout) Type of test: Species: Exposure period: 	<pre>static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] Brachydanio rerio (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] ? [] OECD Guide-line 204 "Fish, Prolonged Toxicity Test: 14-day Study" Yes [] No [X] ? [] Marlon A 350 (CAS #68411-30-3) C₁₀₋₁₃ LAS, average alkyl chain length = 11.6 Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Concentration of test substance related to MBAS. European Commission. 2000b. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929). 4 Not assignable. The original study was not available for review.</pre>	
 (j) Type of test: Species: Exposure period: Results: Analytical monitoring: Method: GLP: Test substance: Remarks: Reference: Reliability: (k) (Rainbow trout) Type of test: Species: Exposure period: Results: 	static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] <i>Brachydanio rerio</i> (Fish, fresh water) 14 day NOEC = 2 mg/L LOEC = 8 mg/L Yes [X] No [] ?[] OECD Guide-line 204 "Fish, Prolonged Toxicity Test: 14-day Study" Yes [] No [X] ?[] Marlon A 350 (CAS #68411-30-3) C ₁₀₋₁₃ LAS, average alkyl chain length = 11.6 Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Concentration of test substance related to MBAS. European Commission. 2000b. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929). 4 Not assignable. The original study was not available for review. static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system [] <i>Salmo gairdneri</i> (Fish, estuary, fresh water) 96 hour LC ₃₀ = 5.8 mg/L	

Analytical monitoring: Method: GLP [.]	Yes [X] No [] ? [] OECD Guide-line 203 "Fish, Acute Toxicity Test" Yes [] No [] ? [X]		
Test substance	C_{10-13} LAS (CAS # 68411-30-3)		
Remarks:	C_{10-13} LAS (CAS # 08411-30-3) Information as cited in IUCLID Data Sheet for CAS #68411-30-3. The submitter (Huels AG) judged the study quality to be good. Analysis showed 92% of nominal concentration. Tap water diluent; water hardness = 96-120 mg/L CaCO ₃ ; pH 6.8-7.3; daily renewal; 14.5-16°C; 5 month old fish tested.		
Reference:	European Commission. 2000i. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, AT/17.		
Reliability:	4 Not assignable. The original study was not available for review.		
(1)			
Type of test:	static []; semi-static [X]; flow-through []; other [] open-system [X]; closed-system []		
Species:	Salmo gairdneri (Fish, estuary, fresh water)		
Exposure period:	96 hour		
Results:	$LC_{50} = 3 \text{ mg/L}$		
Analytical monitoring:	Yes [X] No [] ? []		
Method:	See remarks.		
GLP:	$Y \in S[1] \in NO[\mathbf{X}] ? [1]$		
Test substance:	DOBANIC ACID 102, C ₁₀₋₁₃ LAS (CAS #08411-30-3)		
Remarks.	AG judged study quality to be good. Daily renewal of test solutions; 14- 16 °C; pH 7.6-8.4; water hardness = 210-240 mg/L CaCO ₃ ; DO=10.0-10.4 mg/L. Fingerlings were tested, mean weight 5.2 g		
Reference:	European Commission. 2000w. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Shell Research Ltd, SBGR.81.083, RR Stephenson.		
Reliability:	4 Not assignable. The original study was not available for review.		
(m) (Bluegill sunfish)	static [V]: comi static []: flow through []: other []		
Type of test.	static [A], settii-static [], now-unough [], other []		
Species.	Lanomis macrochirus (Fish fresh water)		
Exposure period	96 hour		
Results:	$I_{C_{50}} = 5.0 \text{ mg/L}$ (mean of 8 tests)		
Analytical monitoring	Yes $\begin{bmatrix} 1 & No \\ X \end{bmatrix}$? $\begin{bmatrix} 1 & 0 \\ 1 \end{bmatrix}$		
Method:	EPA-660/3-75-009		
GLP:	Yes [] No [] ? [X]		
Test substance:	C ₁₀₋₁₃ LAS, average chain length 11.8 (CAS #68411-30-3)		
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Huels AG judged study quality to be good. LC_{50} values for the 8 tests conducted ranged from 3.7 to 7.7 mg/L. Nominal concentration, (expected deviation <20%), reconstituted water, water hardness = 30-48 mg/L CaCO3; pH 7.3-7.8; 20-23°C; fish size: 0.35-0.89 g		
Reference:	European Commission. 2000q. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 22852, 23613, 23612, 23617, 23722, 22824, 28661, 27917.		

Reliability:	4 Not assignable. The original studies were reviewed by HERA (2004) for Annex 2 and judged to be reliable.			
(n)				
Type of test:	static [X]; semi-static []; flow-through []; other []			
	open-system [X]; closed-system []			
Species:	Lepomis macrochirus (Fish, fresh water)			
Exposure period:	96 hour			
Results:	$LC_{50} = 2.2 \text{ mg/L}$			
Analytical monitoring:	Yes [] No [X] ? []			
Method:	EPA-660/3-75-009			
GLP:	Yes $[] No [] ? [X]$			
l est substance:	C ₁₀₋₁₃ LAS, average chain length 11.8 (CAS #68411-30-3)			
Kemarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Huels AG judged study quality to be good. Nominal concentrations, (expected deviation $<20\%$). Reconstituted water with hardness = 44 mg/L CaCO ₃ ; pH 7.58; 22°C; fish size: 0.35 g, 40 mm; Note that this study was not included in the HERA LAS acute toxicity data summary tables in the SIAR because only a summary of the study, not the full report, is available.			
Reference:	European Commission. 2000p. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 22581, 28361.			
Reliability:	4 Not assignable. The original study was not available for review.			
(o) (Golden Orfe)				
Type of test:	static [X]; semi-static []; flow-through []; other []			
	open-system [X]; closed-system []			
Species:	Leuciscus idus (Fish, fresh water) (Golden orfe)			
Exposure period:	48 hour			
Results:	$LC_{50} = 4.6 \text{ mg/L}$			
Analytical monitoring:	Yes [] No [X] ? []			
Method:	Determination of the effect of substance in water on fish, DIN 38412 part 15			
GLP:	Yes[] No[X] ?[]			
Test substance:	C ₁₀₋₁₃ LAS, sodium sait (CAS #08411-30-3)			
Reference:	European Commission. 2000a. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Huels Study (unpublished).			
Reliability:	4 Not assignable. The original study was not available for review.			
(p) (Fathead minnow)				
Type of test:	static [X]; semi-static []; flow-through []; other [] open-system [X]: closed-system [] not stated			
Species:	Pimephales promelas (Fish, fresh water)			
Exposure period:	96 hour			
Results:	$LC_{50} = 4.6 \text{ mg/L}$			
Analytical monitoring:	Yes [X] No [] ? []			
Method:	Ten fathead minnows were exposed for 96 hours to LAS under the following conditions: hardness 35 mg/L as CaCO ₃ ; pH 7.1; temperature 21°C. Fish were not fed during the exposure.			
GLP:	Yes [] No [X] ? []			

Test substance:	Low molecular weight LAS, sodium salt (CAS #68411-30-3); C_{10} 5%, C_{11} 27%, C_{12} 53%, C_{13} 13%, 2-phenyl 23%; average alkyl chain length =
Remarks:	$C_{11,1}$. The carboxylated intermediates formed in the biodegradation of LAS were also tested and found to be several orders of magnitude less toxic than LAS. These intermediates undergo further biodegradation, more rapidly in a natural river water than in a synthetic medium
Reference:	Swisher, R.D., Gledhill, W.E., Kimerle, R.A. and Taulli, T.A. 1978. Carboxylated intermediates in the biodegradation of linear alkylbenzene sulfonates (LAS). VII International Congress on Surface Active Substance Proceedings Moscow 1976 4:218-230
Reliability:	2 Valid with restrictions
(q)	
Type of test:	static [X]; semi-static []; flow-through []; other []
	open-system [X]; closed-system []
Species:	Pimephales promelas (Fish, fresh water)
Exposure period:	96 hour
Results:	$LC_{50} = 4.1 \text{ mg/L}$
Analytical monitoring:	Yes [] No [X] ? []
Method:	USEPA methods for acute toxicity tests with fish, macroinvertebrates, and amphibians. Ecol. Res. Series. EPA-660/3-75-009.
GLP:	Yes [] No [X] ? []
Test substance:	C_{10-13} LAS, average chain length 11.7 (CAS #68411-30-3) (C_{10} 7.3%; C_{11} 26.5%; C_{12} 56.7%; C_{13} 9.0%; C_{14} 0.5%); Mean phenyl position = 3.9;
Remarks:	Acute tests were conducted at EG&G Bionomics from 1971 to 1976 with 2-3 month old fathead minnows in 20-L glass vessels with soft reconstituted water (hardness = 40 mg/L as CaCO ₃). Tests with LASs of average alkyl chain length of 11.2 and 13.3 were conducted concurrently, with the resultant 96 hour LC ₅₀ values of 12.3 and 0.86 mg/L, respectively.
Reference:	Holman, W.F. and Macek, K.J. 1980. An aquatic safety assessment of linear alkylbenzene sulphonate (LAS); chronic effects on fathead minnows, Trans, Am. Fish. Soc. 109(1):122-131.
Reliability:	2 Valid with restrictions
(r)	
Type of test	static [X]: semi-static []: flow-through []: other []
rype of test.	open-system [X]: closed-system []
Species.	Pimenhales promelas (Fish fresh water)
Exposure period	48 hour
Results.	The following table shows the acute toxicity of the tested materials (I C _{co}
1000110.	mg/L).

		Fathead minnow LC ₅₀ (mg/L)	
	Average chain length	24 hour	48 hour
High molecular weight	13.3	1.9	1.7
LAS			
Individual homologues			

LAS			
C ₁₀	10	48.0	43.0
C ₁₁	11	17.0	16.0
C ₁₂	12	4.7	4.7
C ₁₃	13	1.7	0.4
C ₁₄	14	0.6	0.4
Nonlinear LAS			
components (DTIS)			
C ₁₀	10	87.0 ± 7.5	86.1 ± 15.0
C ₁₂	12	24.8 ± 5.8	21.5 ± 5.5
C ₁₄	14	8.1 ± 5.1	5.3 ± 3.9
Model biodegradation			
intermediates			
C ₄ (SØ Butyrate)	4	~10,000	~10,000
C ₅ (SØ Valerate)	5	~10,000	~10,000
C_{11} (SØU)	11	$85.9 \pm 5.1*$	$76.6 \pm 12.4*$

*Subsequent repurification of this sample yielded a product with the same isomeric composition but with LC_{50} values over 1000 mg/L for fatheads.

Analytical monitoring: Method:	Yes [X] No [] ? [] MBAS EPA-660/3-75-009 1975. Method for acute toxicity tests with fish, macroinvertebrates and amphibians. Acute toxicity tests were conducted on high molecular weight LAS, individual pure homologues, non-linear LAS components (dialkyl tetralin or indane sulfonates, DTIS), and model biodegradation intermediates (sulfophenylundecane, SOU) in order to determine whether biodegradation decreases toxicity. Toxicity tests were conducted in 5 L of 100 mg/L hardness water using 5 fathead minnows per concentration.
GLP:	Yes [] No [] ? [X]
Test substance:	1) High molecular weight LAS: Average chain length = 13.3; C_{11} 1%, C_{12} 8%, C_{13} 52%, C_{14} 39%
	2) Individual LAS homologues of C_{10} , C_{11} , C_{12} , C_{13} , and C_{14}
	3) Nonlinear LAS components (DTIS)
	4) Model biodegradation intermediates
Remarks:	The length of the alkyl chain is the most important factor influencing acute toxicity, which increases as the alkyl chain increases. These longer alkyl chain homologues are the first constituents of the LAS mixture to degrade. The nonlinear components (DTIS) showed 1/2 to 1/10 the toxicity of LAS with the same carbon chain length. Toxicity of biodegradation intermediates is significantly less than the parent LAS. Because of the shorter than normal study duration and smaller than standard number of fish per concentration, the reliability of the absolute values cannot be assessed. However, the study is considered reliable for the trends in the data because the homologues were tested under identical conditions.
Reference:	Kimerle, R.A. and Swisher, R.D. 1977. Reduction of aquatic toxicity of linear alkylbenzene sulfonate (LAS) by biodegradation. Water Research 11:31-37.
Reliability:	2 Valid with restrictions

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

A. Daphnia

Static [X]; semi-static []; flow-through
Open-system [X]; closed-system []
Daphnia magna (Crustacea)
48 hours
Immobility
$EC_{50} = 1.62 \text{ mg/L}$; The number of immobile animals at each concentration is shown in the following table:

Concentration of test substance (mg/L)								
Time (h)	0	3.2	5.6	10	18	32	56	100
0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	12	20
48	0	0	0	1 ^a	6 ^a	12 ^a	20	20

^a Condition of mobile animals was impacted as compared to the controls in a dose-responsive manner.

Analytic Monitoring: Method:	Yes [X]; No []; ? [] OECD Guideline 202. Seven concentrations (3.2, 5.6, 10, 18, 32, 56, and 100 mg/L) plus controls were tested. The dilution water was DSWL water, prepared from ground water. Four beakers containing five <i>Daphnia</i> each were used for each test or control solution. <i>Daphnia</i> were less than 24 hours old at test initiation. A fifth beaker with 100 mg/L solution and five <i>Daphnia</i> were added 24 hours after initiation. Test and control solutions were not renewed and the <i>Daphnia</i> were not fed. Dissolved oxygen and pH were measured at 0 and 48 hours in all concentrations, as well as at 24 hours in the 100 mg/L chambers 24 hours after initiation because of total immobility observed at that level. Dissolved oxygen ranged from 8.7 to 9.6 mg/L and pH ranged from 7.9 to 8.1. Water hardness was 215 mg/L as CaCO ₃ . Test temperature was maintained at 20 $\pm 1^{\circ}$ C under a 16:8 (light:dark) cycle. The chambers were not aerated. Immobile animals were counted at 24 and 48 hours. Samples for analysis
	of each concentration were taken at 0, 24, and 48 hours. This is a key
CID	study for aquatic toxicity to invertebrates (see SIAR Table 10).
ULF. Test Substance I AS: 8'	7 85% activity
Remarks.	4.24 hour EC to of 3.58 mg/L and a 48 hour NOEC of 0.379 mg/L (both
Kemurks.	based on immobility) were also calculated, as well as a 48 hour NOEC of 5.6 mg/L based on condition. Only nominal concentrations are reported. No further information on the test substance is reported.
Reference:	Hooftman, R.N. and van Drongelen-Sevenhuijsen, D. 1990. The acute Toxicity of E-3473.01 (ETS 311) to <i>Daphnia magna</i> . TNO Netherlands Organization for Applied Research. TNO Report No. R 89/403.
Reliability:	1 Valid without restrictions.
(b)	
Species:	Daphnia magna
Results:	EC_{50} values ranged from 1.62 to 9.3 mg/L
Test Substance: C ₁₀₋₁₃ L	AS (CAS #68411-30-3)

August 11, 2005

Remarks:	A total of 20 daphnid studies were reviewed by HERA in 2004. Nine of these studies were rejected because the test material was not commercial LAS, the study deviated significantly from standard protocols, or non- standard endpoints were measured. The remaining 11 studies were evaluated for reliability and the results reflect the range of acute EC_{50} values obtained for <i>Daphnia magna</i> . These studies are tabulated and discussed further in the SIAR and SIAP in a weight-of-evidence approach. A robust summary for the study with the lowest acute EC_{50} value was prepared (see Hooftman and van Drongelen-Sevenhuijsen above).
Reference: Reliability:	HERA-LAS team, May 2004; see SIAR Annex 2. 4 Not assignable. This study has been given a reliability score of 4 because it is a summary evaluation of a series of studies conducted by other researchers.
(c)	
Species:	Daphnia magna
Results:	$EC_{50} = 4.7 \text{ mg/L} (139 \text{ records})$
Test Substance:C10-14	LAS (all LAS in range, including data for individual homologues)
Remarks:	EC_{50} is geometric mean of 139 records compiled from a BKH (1993) literature review. Values range from 0.26 to 55 mg/L. This large range is caused by differences in the LAS tested with respect to alkyl chain and/or phenyl isomer distribution and differences in test design.
Reference:	van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J., Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect concentrations and risk characterization of four surfactants: LAS, AE, AES, and soap, Environ. Toxicol. Chem. 18:2653-2663.
Reliability:	4 This study was given a reliability score of 4 because the original reports reviewed by the authors were not directly reviewed in the compilation of this robust summary.
(d)	
Type of test:	<pre>static []; semi-static []; flow-through []; other []; open-system []; closed-system [] not stated</pre>
Species:	Daphnia magna (Crustacea)
Exposure period:	48 hour
Results:	$EC_{50} = 6.8 \text{ mg/L}$
Analytical monitoring:	Yes $\begin{bmatrix} 1 & No \begin{bmatrix} X \end{bmatrix} & ? \end{bmatrix}$
Method:	Directive 84/449/EEC, C.2 "Acute toxicity for <i>Daphnia</i> " 1984
GLP: Tost substance:	$Y \in S[X] \text{NO}[J] ?[J] \\ C = J \wedge S \text{and} \text{and} (C \wedge S \# 68411, 20, 2)$
Remarks:	Lab, soluli sal (CAS #06411-50-5)
Reference:	European Commission. 2000a. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Huels Study (unpublished).
Reliability:	4 Not assignable. The original study was not available for review.
(e)	
Type of test:	<pre>static [X]; semi-static []; flow-through []; other []; open-system [X]; closed-system []</pre>
Species:	Daphnia magna (Crustacea)
Exposure period: Results:	48 hour $LC_{50} = 5.5 \text{ mg/L} \text{ (mean of 3 valid tests)}$

Analytical monitoring:	Yes [] No [X] ? []
Method:	EPA-660/3-75-009
GLP:	Yes [] No [] ? [X]
Test substance:	C ₁₀₋₁₃ LAS, average chain length 11.8 (CAS #68411-30-3)
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Life-
	stage: <24 h. Effect: immobility. LC_{50} values for 4 tests ranged from 4.4
	to 10.4 mg/L. Huels AG judged study quality to be good. Nominal
	concentrations (expected deviation <20%). Reconstituted water with
	hardness = $162-220 \text{ mg/L CaCO}_3$. Note that all four of these studies are
	included in Appendix 2, the HERA acute toxicity data review. Three of
	the studies, Reports 23618, 22853 and 23611 with respective values of
	4.4, 4.9 and 7.1 mg/L, are considered remained and are included in the lable of acute toxicity values. The fourth study, Report 23276 with a value of
	10.4 mg/L is listed among the rejected studies because it was conducted
	as part of a OA program to qualify various labs and the result is not
	considered reliable
	pH 7.86-8.53. 21-22°C
Reference:	European Commission. 2000r. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs.,
	sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble,
	1991, 23618, 22853, 23611, 23276.
Reliability:	2 Valid with restrictions for the three valid studies. The original studies
	were reviewed by HERA (2004) for Annex 2.
(0)	
(f) The first state	
Type of test:	static [X]; semi-static []; flow-through []; other [];
Second and	open-system [X]; closed-system []
Species:	18 hour
Exposure periou.	40 11001 The following table shows the soute toxicity of original materials (LC
Results.	mg/L).

		Daphni	a magna
	Average chain length	24 hour	48 hour
High molecular weight	13.3	2.6 ± 0.1	2.3 ± 0.1
LAS			
Individual homologues			
LAS			
C_{10}	10	53.1 ± 0.4	12.3 ± 2.6
C ₁₁	11	15.8 ± 3.0	5.7 ± 0.6
C ₁₂	12	10.7 ± 1.6	3.5 ± 1.0
C ₁₃	13	2.7 ± 0.4	2.0 ± 0.3
C ₁₄	14	1.2 ± 0.2	0.7 ± 0.2
Nonlinear LAS			
components (DTIS)			
C ₁₀	10	106.0 ± 27.0	98.0 ± 21.3
C ₁₂	12	55.1 ± 9.1	34.1 ± 5.1
C_{14}	14	12.4 ± 1.4	10.0 ± 1.0
Model biodegradation			
intermediates			
C ₄ (SØ Butyrate)	4	~12,000	~6,000
C_5 (SØ Valerate)	5	~12,000	~5,000

		Daphni	a magna
	Average chain length	24 hour	48 hour
C ₁₁ (SØU)	11	$355 \pm 150*$	$208 \pm 85*$

*Subsequent repurification of this sample yielded a product with the same isomeric composition but with LC_{50} values over 1000 mg/L for daphnids (Swisher et al., 1976).

Analytical monitoring:	Yes [X] No [] ? [] MBAS
Method:	EPA-660/3-75-009 1975. Method for acute toxicity tests with fish, macroinvertebrates and amphibians.
	Acute toxicity tests were conducted on high molecular weight LAS,
	individual pure homologues, non-linear LAS components (dialkyl tetralin
	or indane sulfonates (DTIS), and model biodegradation intermediates
	(sulfophenyl undecane, SØU) in order to determine whether
	biodegradation decreases toxicity. In 250 mL beakers with 200 mL of
	well water of approximately 250 mg/L hardness, ten Daphnia, less than
	18 hours old, were placed in each of the three beakers. No food was
	added for the duration of the test.
GLP:	Yes [X] No [] ? []
Test substance:	1) High molecular weight LAS: Average chain length = 13.3 ; C ₁₁ 1%, C ₁₂
	8%, C ₁₃ 52%, C ₁₄ 39%
	2) Individual LAS homologues of C_{10} , C_{11} , C_{12} , C_{13} , and C_{14}
	3) Nonlinear LAS components (DTIS)
	4) Model biodegradation intermediates
Remarks:	The length of the alkyl chain is the most important factor influencing
	acute toxicity, which increases as the alkyl chain increases. These
	longer alkyl chain homologues are the first constituents of the LAS
	mixture to degrade. The nonlinear components (DTIS) showed 1/2 to
	1/10 the toxicity of LAS with the same carbon chain length. Toxicity of
	biodegradation intermediates is significantly less than the parent LAS.
	Daphnia acute toxicity tests on partially degraded LAS demonstrated
	that toxicity is significantly lessened as LAS biodegraded. Because of
	the shorter than normal study duration and smaller than standard number
	of <i>Daphnia</i> per concentration, the reliability of the absolute values
	cannot be assessed. However, the study is considered reliable for the
	conditions.
Reference:	Kimerle, R.A. and Swisher, R.D. 1977. Reduction of aquatic toxicity of
	linear alkylbenzene sulfonate (LAS) by biodegradation. Water Research
	11.51-57.

B. Other aquatic invertebrates

(a)	
Species:	Gammarus pulex (amphipod)
	<i>Mysidopis bahia</i> (mysid)
	Panaeus duorarum (pink shrimp)
Results:	EC_{50} (<i>G. pulex</i>) = 6.2 mg/L (25 records)
	EC_{50} (<i>M. bahia</i>) = 1.7 mg/L (6 records)
	EC_{50} (<i>P. duorarum</i>) = 49 mg/L (5 records)
Test Substance: C ₁₀₋₁₄ L	AS (all LAS in range, including data for individual homologues)

Remarks:	Geometric mean EC_{50} values for number of records listed for each species.
	The interspecies variation decreases considerably when the geometric
	mean value per species is calculated.
Reference:	van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J.,
	Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect
	concentrations and risk characterization of four surfactants: LAS, AE,
	AES, and soap, Environ. Toxicol. Chem. 18:2653-2663.
Reliability:	4 This study was given a reliability score of 4 because the original reports
·	reviewed by the authors were not directly reviewed in the compilation of
	this robust summary.
	2

(b)	
Species:	Crustacean species
Results:	$LC_{50} = 17.0 \text{ mg/L} (14 \text{ records}; \text{SD} = 0.68)$
Test Substance:LAS; al	l in the alkyl chain length C ₁₀₋₁₄
Remarks:	LC ₅₀ is geometric mean of 14 records compiled from literature reviews.
	Geometric mean LC_{50} for all taxa (36 records) was 4.36 mg/L.
Reference:	Temara, A., Carr, G., Webb, S., Versteeg, D., and Feijtel, T.C.J. 2001.
	Marine risk assessment: Linear alkylbenzensulphonates (LAS) in the
	North Sea. Mar. Poll. Bulletin 42:635-642.
Reliability:	4 This study was given a reliability score of 4 because the original reports
	reviewed by the authors were not directly reviewed in the compilation of
	this robust summary.

(c)

(C)	
Type of test:	<pre>static [X]; semi-static []; flow-through []; other [];</pre>
	open-system [X]; closed-system []
Species:	Chironomus riparius (chironomid)
Exposure period:	96 hour
Results:	$LC_{50} = 6.5 \text{ mg/L}$
Analytical monitoring:	Yes [] No [X] ? []
Method:	EPA
GLP:	Yes [] No [] ? [X]
Test substance:	C ₁₀₋₁₃ LAS, average chain length 12.3 (CAS #68411-30-3)
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Huels
	AG judged study quality to be good. Nominal concentrations (expected
	deviation <20%). Well water with hardness = 24-30 mg/L CaCO ₃ ; pH
	7.1; 21-22°C
Reference:	European Commission. 2000v. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991 34845
Reliability.	4 Not assignable The original study was not available for review
(d)	
Type of test:	static [X]; semi-static []; flow-through []; other [];
• •	open-system [X]; closed-system []
Species:	Limnodrilus hoffmeisteri (aquatic worm)
Exposure period:	96 hour
Results:	$LC_{50} = 1.8 \text{ mg/L}$
Analytical monitoring:	Yes [] No [X] ? []
Method:	EPA 660/3-75-009
GLP:	Yes [] No [] ? [X]

Test substance: Remarks:	C_{10-13} LAS, average chain length 12.3 (CAS #68411-30-3) Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Additional LC ₅₀ values for extended exposure times: 144 h: 1.1 mg/L, 196 h: 0.96 mg/L. Huels AG judged study quality to be good. Nominal concentrations (expected deviation <20%). Well water with hardness = 24-30 mg/L CaCO ₂ : pH 7.1: 21-22°C
Reference:	European Commission. 2000v. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 34845.
Reliability:	4 Not assignable. The original study was not available for review.
(e)	
Type of test:	<pre>static [X]; semi-static []; flow-through []; other []; open-system []; closed-system []</pre>
Species:	<i>Planaria</i> sp. (aquatic worm)
Exposure period:	48 hour
Results:	$LC_{50} = 1.8 \text{ mg/L}$
Analytical monitoring:	Yes[] NO[X] ? []
Method:	EPA 000/3-75-009
ULP: Test substance:	$\begin{array}{c} \text{Yes} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ NO} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ \begin{array}{c} \text{Yes} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \right$
Pemarka:	LAS, average chain length 12 (CAS #06411-50-5)
Kemarks.	AG judged study quality to be good. Nominal concentrations (expected deviation <20%). Reconstituted water with hardness 165 mg/L CaCo ₃ . pH 8.1–8.4; 21-22°C; size 3.4 cm.
Reference:	European Commission. 2000u. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 31340.
Reliability:	4 Not assignable. The original study was not available for review.
(f)	
Type of test:	<pre>static [X]; semi-static []; flow-through []; other [];</pre>
	open-system [X]; closed-system []
Species:	Rhabditis sp. (nematode)
Exposure period:	48 hour
Results:	$LC_{50} = 16 \text{ mg/L}$
Analytical monitoring:	Yes [] No [X] ? []
Method:	EPA 660/3-75-009
GLP:	Yes [] No [X] ? []
Test substance:	C_{12} LAS (CAS #25155-30-0) (average chain length 11.8)
Remarks:	Nominal concentrations, (expected <20%), 3 replicates of 5 test
	concentrations plus a control. Reconstituted water with hardness = 65 mg/L CaCO ₃ ; DO 5.3 mg/L; pH 8.1-8.4; 21-23°C; size: 0.3 mm; 12 hr. photoperiod at 40-70 L/ft ² . Five other species were also tested and had the following 48-hr LC ₅₀ values (all mg/L): Midge 23; <i>Gammarus</i> (amphipod) 3.3; <i>Asellus</i> (isopod) 270; <i>Dugesia</i> (flatworm) 1.8; and <i>Dero</i> (oligochaete) 1.7.
Reference:	Lewis, M.A. and Surprenant, D. 1983. Comparative acute toxicities of surfactants to aquatic invertebrates. Ecotoxicol. Env. Saf. 7(3):313-322.
Reliability:	2 Valid with restrictions

4.3 TOXICITY TO AQUATIC PLANTS, e.g. algae

(a)	
Type of Test:	Static [X]; semi-static []; flow-through []
	Open-system [X]; closed-system []; not stated []
Species:	Selenastrum capricornutum (algae)
Endpoint:	Biomass []; Growth rate [X]; Other []
Exposure Period:	96 hours
Results:	$EC_{50} = 29.0 \text{ mg/L}$
	NOEC = 0.5 mg/L
	LOEC = 1.0 mg/L
Analytic Monitoring:	Yes []; No []; ? [X]
Method:	ASTM. 1984. Standard Practice for Conducting Toxicity Tests with
	Microalgae, Draft #7, Philadelphia, PA. Algae were exposed to the test
	material for four days, after which cell counts were made. The EC_{50} value
	was calculated using the method of Larson and Schaefer. Assumed 1 x
	10^4 cells/mL because ASTM protocol, but not reported.
GLP:	Yes []; No [X]; ? []
Test Substance:	$C_{11.8}$ LAS; MW = 345; technical grade LAS from P&G
	Remarks: The first significant effect concentrations were
	between 0.5 and 1.0 mg/L. Mean test temperature was 23.6 (21.2-25.6
	°C). Total mean water hardness was 137 mg/L as CaCO ₃ . The pH range
	was 6.8 to 7.2. Mean dissolved oxygen was 9.1 mg/L. Results of the
	laboratory studies were compared with enclosure studies conducted with
	natural phytoplankton assemblages. Concentrations in the enclosures that
	first altered community structure were found to be between 27 and 108
	mg/L. The EC_{50} value reported represents the lowest acute value for algal
	species for which a report or publication was available. This is a key study
	for aquatic toxicity to algae (see SIAR Tables 10 and 12).
Reference:	1) Lewis, M.A. 1986. Comparison of effects of surfactants on freshwater
	phytoplankton communities in experimental enclosures and on algal
	population growth in the laboratory. Environ. Toxicol. Chem. 5:319-332.
	2) Lewis, M.A. and Hamm, B.G. 1986. Environmental modification of the
	photosynthetic response of lake plankton to surfactants and significance to
D 1: 1 1:	a laboratory-field comparison. Wat. Res. 20:15/5-1582.
Reliability:	2 Valid with restrictions
(1)	
(D) Consistent	
Species:	Selenasirum capricornulum and Scenedesmus subspicalus
Enapoint. Dogulta:	Biomass []; Growin rate [A]; Other [] E.C. volves repead from 20 to 25.5 for S convision (two reported)
Kesuits:	E_rC_{50} values ranged from 29 to 35.5 for S. <i>capricornulum</i> (two records)
Test Substances	$E_r C_{50}$ values langed from 82 to 105 mg/L for 5. subspicatus (linee records)
Test Substance.	C_{10-13} LAS (CAS #06411-50-5) A total of 12 along atuding aniginally ware reviewed by UEDA in 2004
Remarks.	A total of 15 algae studies originally were reviewed by HERA in 2004.
	Eign of these studies were rejected because
	aignificantly from standard protocols, or non standard and points were
	significantly from standard protocols, of non-standard endpoints were
	the results reflect the range of coute E_{C} values obtained for the two
	most commonly tested algal species. These studies are tabulated and
	discussed further in the SIAR and SIAP in a weight of avidance
	approach A robust summary for the study with the lowest equite ΓC
	approach. A focust summary for the study with the lowest acute $E_r C_{50}$

Reference: Reliability:	 value was prepared (see Lewis 1986 above). HERA-LAS team, May 2004; see SIAR Annex 2. 4 Not assignable. This study is given a reliability score of 4 because it is a summary evaluation of a series of studies conducted by other researchers. 			
(c)				
Species:	Chlamydomonas n Plectonema boryani	reinhardi, Chloi um, Scendesmus si	rella kessleri, N ubspicatus, Selenast	<i>dicrocystis</i> sp., <i>trum sp.</i> (algae)
Results:	NOEC (<i>C. reinhardi</i>) = 12 mg/L (1 record) NOEC (<i>C. kessleri</i>) = 3.5 mg/L (1 record) NOEC (<i>Microcystis sp.</i>) = 0.80 mg/L (4 records) NOEC (<i>P. boryanum</i>) = 15 mg/L (1 record) NOEC (<i>S. subspicatus</i>) = 7.7 mg/L (4 records) NOEC (<i>Selenastrum sp.</i>) = 3.8 mg/L (9 records)			
Test Substance: Remarks:	LAS normalized to Geometric mean N	$C_{11.6}$ OEC values for	number of records	listed for each
Reference:	van de Plassche, E. Feijtel, T.C.J. an concentrations and	species. van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J., Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect concentrations and risk characterization of four surfactants: LAS, AE,		
Reliability:	AES, and soap. Environ. Toxicol. Chem. 18:2653-2663. 4 This study was given a reliability score of 4 because the original reports reviewed by the authors were not directly reviewed in the compilation of this robust summary.			
(d) (Scenedesmus)				
Species:	Scenedesmus subspi	catus (Algae)		
Endpoint:	Biomass []; Growt	h rate [X]; Other	.[]	
Exposure period:	72 hour			
Results:	The 72-hr EC_{50} values were 240, 163, and 54.3 mg/L for the C_{11} , $C_{11.6}$, and			
	C_{13} LAS, respective	ly. Other endpoin	ts not determined.	
Analytical monitoring:	Yes [] No [X] ? []		
Method:	OECD 201 Algal recommended by A maintained within a Initial cell concentr reported.	growth inhibitic FNOR was used. cceptable ranges i ations were 1 x 1	n test. 1984. All water quality n compliance with 10^4 cells/mL. Fina	The test media parameters were the test protocol. l cell counts not
	open-system [X]; clo	osed-system		
GLP:	Yes [X] No [] ? []			
Test substance:	following homologu	yl chain lengths ie distributions:	of LAS (C_{11} , $C_{11.6}$	$(5, C_{13})$, with the
		Alkyl Cha	in Length Distribu	tions (%)
		LAS C ₁₁	LAS C _{11.6}	LAS C ₁₃
	<c<sub>10</c<sub>	1.5	0.4	
	C ₁₀	29.0	8.9	1.0
	C ₁₁	39.0	33.7	3.5
	C ₁₂	28.5	31.0	17.8
	C ₁₃	1.8	24.0	37.0
	C ₁₄	0.2	2.0	40.4
	>C ₁₄			0.3

	LAS MW (as Na-LAS)	334	343	363
Remarks:	German strain of <i>S. subspicatus</i> from the University of Gottingen. Other endpoints were not reported			
Reference:	Verge, C. and Moreno, A. 1996a. Toxicity of anionic surfactants to green microalgae "Scenedesmus subspicatus" and "Selenastrum			
Reliability:	2 Valid with restrict	ions	55.100 100.	
(e)				
Species:	Scenedesmus subspi	catus (Algae)		
Endpoint:	Biomass []; Growt	h rate [X]; Other	:[]	
Exposure period:	72 hour			
Results:	The 72-hr EC_{50} values C_{10} , C_{10} NOEC values were	lues were 270, 1 $_{11}$, C ₁₂ , C ₁₃ , and C 80, 40, 18, 12, and	11, 48, 30, and 18 C_{14} , respectively. The d 7, respectively.	mg/L for pure corresponding
Analytical monitoring:	Yes [] No [X] ? [
Method:	OECD 201 Algal growth inhibition test. 1984. The test media recommended by AFNOR was used. All water quality parameters were maintained within acceptable ranges in compliance with the test protocol. Initial cell concentrations were 1×10^4 cells/mL. Final cell counts not reported.			
	open-system [X]; clo	osed-system []		
GLP:	Yes [X] No [] ? []			
Test substance:	Five pure homologu	e cuts were tested	, with the following	distribution.

	Alkyl Chain Length Distributions (%)				
	LAS C ₁₀	LAS C ₁₁	LAS C ₁₂	LAS C ₁₃	LAS C ₁₄
<c<sub>10</c<sub>	0.5		0.4		
C ₁₀	96.8	5.5	13.9	0.7	
C ₁₁	2.7	93.7	84.5	9.8	0.6
C ₁₂		0.8	1.2	78.3	1.0
C ₁₃				11.2	15.4
C ₁₄					82.1
>C ₁₄					0.9
LAS MW (as Na-LAS)	320.7	333.7	346.4	362.3	373.7

Remarks:French strain of S. subspicatus from the University of Metz. As NOEC
(no observed effect concentration), the authors used the EC5 because of
the lack of noticeable variation in toxicity for the interval 0-5%. This is a
key study for aquatic toxicity to algae (see SIAR Table 12).Reference:Verge, C. and Moreno, A. 1996a. Toxicity of anionic surfactants to green
microalgae "Scenedesmus subspicatus" and "Selenastrum
capricornutum." Tenside Surf. Det. 33:166-168.Reliability:2 Valid with restrictions

Species: Endpoint: Exposure period: August 11, 2005

89

72 hour

Scenedesmus subspicatus (Algae)

Biomass [X]; Growth rate [X]; Other []

 E_rC_{50} (growth rate) = 127.9 mg/L; E_bC_{50} (biomass) = 43.2 mg/L NOEC (growth rate) = 2.4 mg/L; NOEC (biomass) = 2.2 mg/L LOEC (growth rate) = 10 mg/L

Inhibition of cell growth by concentration and duration is shown in the table below:

Cell number (x 10 ⁴ cells/mL)				
	Time Period (hours)			
Test concentration (mg/L)	0	24	48	72
Control	2	8	29	95
0.6	2	8	30	89
2.4	2	9	28	85
10	2	9	27	75
40	2	8	20	48
160	2	7	9	8

Analytical monitoring: Yes [] No [X] ? []

Results:

Analytical monitoring.	
Method:	open-system [X]; closed-system []
	Algal growth inhibition test (88/302/EWG) 1988.
	Nominal test concentrations were control, 0.6, 2.4, 10, 40, and 160 mg/L.
	Algae were exposed to LAS in Erlenmeyer flasks in an environmental
	chamber on a light table at 8000 lux. Cell numbers were photometrically
	determined (8 subsets were taken for each concentration).
GLP:	Yes [X] No [] ? []
Test substance:	Marlon A 390 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length
	= 11.6; 91.3% activity
Remarks:	Initial cell concentrations were 20,000 cells/mL. Cell concentrations at 72
	h were 95, 89, 85, 75, 48 and 8 (all x 10^4 /mL) for the control, 0.6, 2.4, 10,
	40 and 160 mg/L LAS concentrations, respectively. The pH ranged from
	7.7 to 7.9 at the beginning of the study and 7.9 to 9.0 at the end of the
	study. Test temperature was maintained at 24 ± 2 °C. This is a key study
	for aquatic toxicity to algae (see SIAR Table 12).
Reference:	Scholz, N. 1992. Bestimmung der Auswirkungen von Marlon A 390 auf
	das Wachstum von Scenedesmus subspicatus 86.81. SAG
	(Algenwachstumshemmtest nach Richtlinie 88/302/EWG) Huels Final
	Report No. AW-291.
Reliability:	1 Valid without restriction
(g)	
Species:	Scenedesmus subspicatus (Algae)
Endpoint:	Biomass [X]; Growth rate [X]; Other []
Exposure period:	72 hour
Results:	E_rC_{50} (growth rate) = 82 mg/L; E_bC_{50} (biomass) = 20 mg/L
	NOEC (growth rate) = 0.4 mg/L ; NOEC (biomass) = 0.1 mg/L

Inhibition of cell growth by concentration and duration is shown in the table below:

Cell number (x 10 ⁴ cells/mL)
Time Period (hours)

Test concentration (mg/L)	0	24	48	72
Control	2	9	32	94
0.1	2	9	32	91
0.4	2	9	29	88
1.6	2	9	28	76
6.4	2	9	24	60
25	2	9	21	54
160	2	6	7	7

Analytical monitoring: Yes [X] No [] ? []

Anarytical monitoring.	
Method:	open-system [X]; closed-system []
	Algal growth inhibition test (92/69/EWG)
	Nominal test concentrations were control 0.1 0.4 1.6 6.4 25 and 160
	mg/L Test concentrations were measured at 0 and 72 h and found to
	mg/L. Test concentrations were measured at 0 and 72 n and round to
	confirm the nominal concentrations. Algae were exposed to LAS in
	Erlenmeyer flasks in an environmental chamber on a light table at 8000
	lux. Cell numbers were photometrically determined (8 subsets were taken
	for each concentration)
GI P.	V_{es} [X] No [1, 2]]
Test substance:	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$
Test substance.	Mation A 550 (CAS #08411-50-5) C_{10-13} LAS, average arkyl chain length -11.6 ; 52.19/ activity
	-11.0, 52.170 activity
Remarks:	Initial cell concentrations were 20,000 cells/mL. Cell concentrations at /2
	h 94, 91, 88, 76, 60, 54 and 7 (all x 10^{4} /mL) for the control, 0.1, 0.4, 1.6,
	6.4, 25 and 160 mg/L LAS concentrations, respectively. The pH ranged
	from 8.2 to 8.3 at the beginning of the study and 8.0 to 9.4 at the end of
	the study. Test temperature was maintained at 24 ± 2 °C. This is a key
	the study. Lest temperature was maintained at 24 ± 2 °C. This is a Key state for a most is torrigitate allow (see SLAD Table 12)
	study for aquatic toxicity to algae (see SIAR Table 12).
Reference:	Scholz, N. 1994. Bestimmung der Auswirkungen von Marlon A 350 auf
	das Wachstum von Scenedesmus subspicatus 86.81. SAG
	(Algenwachstumshemmtest nach Richtlinie 92/69/EWG) Huels Final
	Report No. AW-372
Reliability:	1 Valid without restriction
Kendonity.	i vand without restriction
(h)	
Species:	Scanadasmus subspicatus (Algae)
En du sinti	Dismoss [V]: Crowth rate []: Other []
Enupoint. Eurogura nariadi	Diomass [A], Olowin Tate [], Other []
Exposure periou.	$\frac{90 \text{ hour}}{\text{EC}} = 5 \text{ mg/I}$
Analytical monitoring:	$EC_{50} = 5 \operatorname{Img}/E$ Ves [] No [] 2 [V]
Method:	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$
GLP.	$Ves \begin{bmatrix} 1 & No \begin{bmatrix} \mathbf{X} \\ 2 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$
Test substance:	Marlon A 250 (CAS $\#69411$ 20 2) C I AS average alleyl shain length
Test substance.	-11.6
Demonstration	- 11.0
Remarks:	Information as cited in IUCLID Data Sneet for CAS #68411-30-3. Data
	refer to 100% active ingredient. Test method conforms with OECD-
	Guideline 201.
Reference:	European Commission. 2000b. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs.,
	sodium salts. Year 2000 CD-ROM edition. citing Henkel KGaA
	unpublished results (Registry No. 5929)
Reliability:	A Not assignable. The original study was not available for raview
Kenaomity.	+ INOL assignable. The original sludy was not available for review.

(i)	
Species:	Scenedesmus subspicatus (Algae)
Endpoint.	Biomass []: Growth rate [X]: Other []
Exposure period	96 hour
Results.	$FC_{ro} = 9 \text{ mg/J}$
Analytical monitoring:	$V_{es} \begin{bmatrix} 1 & N_0 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{V} \end{bmatrix}$
Mathod:	Directive $\frac{87}{202}$ (E.C. part C. p. 80 "Algel inhibition test"
CL D	March N. W. 211
GLP:	$\begin{array}{c} Y \in S \left[\right] NO \left[\mathbf{X} \right] \left[\right] \\ O = U + O \left[1 \right] \left[1 \right] $
Test substance:	C_{10-13} LAS, sodium salt; average chain length 11.6 (CAS #68411-30-3)
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Huels AG judged study quality to be good.
Reference [.]	European Commission 2000c Benzenesulfonic acid $C_{10,12}$ -alkyl derivs
	sodium salts Year 2000 CD-ROM edition citing Huels AG 1/90 N
	Scholz unpublished
Reliability.	4 Not assignable. The original study was not available for review
Kendonity.	+ Not assignable. The original study was not available for review.
(j)	
Species:	Scenedesmus subspicatus (Algae)
Endpoint:	Biomass []; Growth rate [X]; Other []
Exposure period:	96 hour
Results:	$EC_{50} = 30 \text{ mg/L}$
Analytical monitoring:	Yes [X] No [] ? []
Method:	ISO 8692 "Water quality - Fresh water algal growth inhibition test with
	Scenedesmus subspicatus and Selenastrum capricornutum"
GLP:	Yes [] No [] ? [X]
Test substance:	C ₁₁₋₁₃ LAS
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Huels
	AG judged study quality to be good Nominal concentrations (deviation
	<3%): BBM medium: pH 6 4-6 7: 20-22°C Note that although this was
	cited in IUCLID as a Procter & Gamble report Procter & Gamble
	indicates that it is unlikely that it is one of their reports
Reference.	European Commission 2000h Benzenesulfonic acid Cious-alkyl derivs
Reference.	sodium salts Vear 2000 CD-ROM edition citing Procter & Gamble
	1991, AL/12.
Reliability:	4 Not assignable. The original study was not available for review.
(1) (Colonastrum)	
(K) (Selenusirum)	Salangatmum agnuiconnutum (Algoo)
Species.	Diamage [1]: Crowth rate [V]: Other [1]
Enapoint.	Diomass [], Giowui fate [A], Otiel []
Exposure period:	96 nour
Results:	$EC_{50} = 4.29-12.5 \text{ mg/L}$
Analytical monitoring:	Yes [X] No [] ? []
Method:	OECD Guideline 201 "Algae, Growth Inhibition Test", 1984
GLP:	Yes [] No [] ? [X]
Test substance:	LAS, average chain length 11.8 (CAS #68411-30-3)
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Huels
	AG judged study quality to be good. Water hardness = 150 mg/L as
	NaHCO ₃ . Reported results are EC_{50} values for 2 tests. Static mean EC_{50} =
	7.3 mg/L.
Reference:	European Commission. 2000t. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs.,
	sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble,
	1991, 29101.

Reliability:	3 Invalid. Based on correspondence with Procter & Gamble, it appears that this study was mis-cited. The P&G report 29101 indicates 96-h EC_{50} values of 29 mg/L and greater than 10 mg/l, not the values reported above. In addition, the P&G study was not conducted under the OECD Guideline cited. Given these discrepancies, the values are uncertain and are considered invalid.
(1)	
Species:	Selenastrum capricornutum (Algae)
Endpoint:	Biomass []; Growth rate [X]; Other []
Exposure period:	72 hour
Results:	$EC_{50} = 11 \text{ mg/L}$
Analytical monitoring:	Yes [X] No [] ? []
Method:	ISO 8692 "Water quality - Fresh water algal growth inhibition test with <i>Scenedesmus subspicatus</i> and <i>Selenastrum capricornutum</i> "
GLP:	Yes [] No [] ? [X]
Test substance:	C ₁₁₋₁₃ LAS (CAS #68411-30-3)
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Huels AG judged study quality to be good. Nominal concentrations (deviation <13%); BBM medium; pH 6.5-6.6; static. Note that although this was cited in IUCLID as a Procter & Gamble report, Procter & Gamble indicates that it is unlikely that it is one of their reports.
Reference:	European Commission. 2000g. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, AL/10.
Reliability:	4 Not assignable. The original study was not available for review.
(m)	
Species:	Selenastrum capricornutum (Algae)
Endpoint:	Biomass []; Growth rate [X]; Other []
Exposure period:	96 hour
Results:	$EC_{50} = 12.2 \text{ mg/L}$
Analytical monitoring:	Yes [] No [] ? [X]
Method:	EPA, 1987.
GLP:	Yes $[] NO [] ? [X]$
Remarks:	C_{10-13} LAS, average chain length 12.3 (CAS #68411-30-3) Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Huels
Reference:	European Commission. 2000n. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991 P2636.01
Reliability:	4 Not assignable. The original study was not available for review.
(n)	
Species:	Selenastrum capricornutum (Algae)
Endpoint:	Biomass []; Growth rate [X]; Other []
Exposure period:	48 hour
Results:	$EC_{50} \approx 80 \text{ mg/L}$ (Observation of graphical plot in paper indicates that the EC_{50} is between 50-100 mg/L)
Analytical monitoring:	Yes [] No [X] ? []
Method:	Algal Assay Procedure Bottle Test, USEPA (1971). Individual test flasks were spiked with a 1 mL algal suspension at 0.7

	mg/L dry weight for each concentration. Test solutions were run in triplicate. Algae were maintained at $24 \pm 2^{\circ}$ Cat 4000 lux for 48 hours.
	Cell counts were accomplished with a Coulter Counter and the growth
CL D	Rate calculated.
GLP:	Yes $\begin{bmatrix} NO \end{bmatrix}$? $\begin{bmatrix} X \end{bmatrix}$
l est substance:	$C_{11.6}$ LAS; 23.4% activity
Kemarks.	assessment because the exposure period was only 48 hours
Reference:	Yamane, A., Okada, M. and Sudo, R. 1984. The growth inhibition of
	planktonic algae due to surfactants used in washing agents. Water Res. 9:1101-1105.
Reliability:	2 Valid with restrictions. Duration of test considered too short for a chronic study, therefore not included in SIAR Table 12A.
(0) (Elodea)	
Species:	Elodea canadensis (aquatic plant)
Endpoint:	Biomass []; Growth rate []; Other [X] inhibition of growth, productivity
Exposure period:	28 day
Results:	NOEC > 4 mg/L
Analytical monitoring:	Yes [X] No [] ? []
Method:	The effect of LAS on the structure and function of microbial communities
	was studied in a flow-through model ecosystem containing several trophic
	revers. Duplicate 19-L glass aqualia containing model ecosystems at rour nominal concentrations $(0.5, 1.0, 2.0, 4.0, mg/L)$ contained water and 2.5
	infinitial concentrations (0.5, 1.0, 2.0, 4.0 mg/L) contained water and 2.5 cm lake sediment (Winton Lake Cincinnati OH) and several trophic
	levels (hacteria algae macrophytes [Flodea canadensis Lemna minor]
	macroinvertebrates [Daphnia magna, Paratanytarsus parthenogenica]
	and fish [Lepomis macrochirus]). Flow rate in the proportional diluter
	delivered approximately 8 replacement volumes per day. Additionally, at
	each cycle of the diluter, 1.5 mL of a Daphnia food suspension diluted
	with a culture of Selenastrum was added to each chamber. Following an
	initial 3 day acclimation period to analytically confirm test concentrations,
	4 glass periphyton slides (5 x 5 cm), 8 vegetative shoots of <i>Elodea</i> , 10
	early instar Daphnia, 25 midge eggs and 5 pre-weighed juvenile bluegills
	(2.5-5.0 cm length) were added to each aquarium. Fish were screened
	from access to the macroinvertebrates by a 60 mesh stainless steel screen
	and were fed a daily supplement of frozen brine shrimp. Test duration was
	28 days. Effects monitored included population and community effects.
	Nominal concentrations were confirmed with MBAS analysis. After 28
	days the vegetative shoots of <i>Elodea</i> were removed, the total length
	measured, and the shoots were placed into aluminium disnes for
CI D.	determination of ash-free dry weights.
GLP. Test substance:	$I \in S[I]$ NO[I] ? [A] $I \wedge S: C^{14} I \wedge S$ about length $C = (0.1\% \text{ purity})$ plug uplabeled I $\wedge S$ with
Test substance.	average chain length C_{12} (71% purity) plus unabled LAS with average chain length C_{12} (C_{12} 9.7% C_{12} 27.9% C_{12} 54.4% C_{12} 8.0%
	95% purity) (tested together)
Remarks:	Dissolved oxygen concentrations ranged between 7.0 and 9.0 mg/L.
	Temperature was maintained at 2°C and the mean pH was 8.1 ± 0.2 . The
	growth and productivity of <i>Elodea</i> was not significantly inhibited at the
	highest concentration tested (4 mg/L) in Phase I. Growth throughout the
	28-day exposure approximately doubled the initial biomass of the

Reference:	vegetative shoots from a mean of about 37 mg ash-free dry weight to a mean of about 72 mg for the treatment concentrations. Similarly, Phase II experiments resulted in an approximate doubling of the initial <i>Elodea</i> biomass in the controls and the 3.75% effluent concentration, though the heavy growth of attached bacteria and fungi (periphyton) that developed in the higher concentrations effectively covered the growing surface of the Elodea shoots resulting in progressively lower productivity in 7.5, 15 and 30% dilutions. Maki, A.W. 1981. A Laboratory model ecosystem approach to environmental fate and effects studies. Unpublished Internal Report,
Reliability:	Environmental Safety Department Procter and Gamble Company, Cincinnati, Ohio. 2 Valid with restrictions
(p) (<i>Lemna</i>) Species: Endpoint: Exposure period:	<i>Lemna minor</i> (aquatic plant) Biomass []; Growth rate []; Other [X] frond count 7 days
Results:	$EC_{50} = 2.7 \text{ mg/L}$ NOEC = 0.9 mg/L (calculated as $EC_{50}/3$); normalized to $C_{11.6} = 1.1 \text{ mg/L}$
Analytical monitoring: Method:	Yes [X] No [] ? [] A 7-day flow-through growth inhibition test was developed using duckweed (<i>Lemna minor</i>). Control water (carbon and reverse osmosis filtered well water) and five concentrations of test material were delivered from diluter mixing chambers to Pyrex glass exposure chambers at a rate of 1.5 L every 16 minutes (approximately 14 replacement volumes per day). At time 0, each chamber received seven 2-frond, root excised duckweed colonies (four replicates per treatment level). Plants were given continuous illumination at 3875 lux (360 foot candles) and temperature was maintained between 21 and 23°C. Total hardness was 120-130 mg/L CaCO ₃ and pH was 7.2-7.6. The number of fronds was recorded once every 24 hours for 7 days. LAS concentrations were measured using the MBAS method.
GLP: Test substance: Remarks:	Yes [] No [] ? [X] C_{10-14} LAS, average alkyl chain length 11.8, MW = 345, 27.3% active Results based on frond count were found to provide the most useful information per unit of laboratory time. Other endpoints resulted in 7-day EC_{50} values of 3.6 mg/L (dry weight), 4.9 mg/L (root length), and 4.8 mg/L (growth rate/doubling time). Concurrent tests with bluegill sunfish (96-hr LC ₅₀ = 1.7 mg/L) and <i>D. magna</i> (48-hr LC ₅₀ = 4.4 mg/L) indicate that protection criteria developed for these species should be adequate to protect the aquatic macrophyte community without the need for additional testing.
Reference:	Bishop, W.E. and Perry, R.L. 1981. Development and Evaluation of a Flow-Through Growth Inhibition Test with Duckweed (<i>Lemna minor</i>). Aquatic Toxicology and Hazard Assessment. ASTM STP 737. Branson, D.R. and Dickson, K.L. (ed.).
(a)	2 valid with restrictions
Type of Test:	Static [X]; semi-static []; flow-through [] Open-system []; closed-system []; not stated [X]

Species:	Chlamydomonas reinhardi (algae)
Exposure Period:	not stated
Effect Criteria:	Growth inhibition
Results:	NOEC = 15 mg/L
	LOEC = 20 mg/L
Analytic Monitoring:	Yes []; No []; ? [X]
Method:	LAS concentrations of 1, 5, 10, 15, 20 and 30 mg/L were prepared in
	Deionized, sterilized double-distilled glass water. Algae were grown
	in Bold's medium. Cell counts were made using a spectrophotometer and
	dry weight observations.
GLP:	Yes []; No [X]; ? []
Test Substance:	C _{11.2} LAS
Remarks:	No morphological changes were observed. The growth rate was reduced
	at LAS concentrations of 20 mg/L. Protein analysis indicated that higher
	concentrations did affect protein synthesis. The NOEC normalized by van
	de Plassche et al. (1999) to $C_{11.6}$ LAS was 12 mg/L.
Reference:	Dhaliwal, A.A., Campione, A., and Smaga, S. 1977. Effect of linear
	alkylbenzene sulfonate (C _{11.2} LAS) on the morphology and physiology of
	Plectonema boryanum and Chlamydomonas reinhardi. J. Phycol. 13:18.
Reliability:	4 Not assignable. This study was given a reliability score of 4 because the
	document reviewed was an abstract.
(r)	
Type of Test:	Static [X]; semi-static []; flow-through []
a :	Open-system []; closed-system []; not stated [X]
Species:	Chlorella kessleri (algae)
Exposure Period:	15 days
Effect Criteria:	Growth rate
Results:	NOEC = 3.1 mg/L
	LOEC = 10 mg/L
Analytic Monitoring:	Yes []; No [X]; ? []
Method:	EPA-600/9-78-018. Algal Assay Bottle Test. Determination of the
	Inhibitory effect of water constituents on green algae, by William E.
	Joseph C. Greene, and Tamotsu Shiroyama, Cornwallis Environmental
CL D	Research Laboratory, Corvallis, Oregon.
GLP:	Yes []; No [X]; ? []
Test Substance:	Marlon A 350, Benzenesultonic acid, C10-13-alkyl derives., sodium salts
	(CAS #68411-30-3); 25.7% activity.
Remarks:	No morphological changes were observed. The growth rate was reduced
	at LAS concentrations of 20 mg/L. Protein analysis indicated that higher
	concentrations did affect protein synthesis. The NOEC normalized by van
D.C	de Plassche et al. (1999) to $C_{11.6}$ LAS was 3.5 mg/L.
Reference:	Henkel KGaA, Biological Research and Product Safety/Ecology,
D 1' 1 '1'	unpublished results of study conducted in 1984; test substance Fi 5829.
Reliability:	2 Valid with restrictions. Non-standard length of study, therefore not
	included in SIAK Table 12A.
(s)	
(9) Type of Test	Static [X]: semi-static []: flow-through []
Type of Test.	Open-system [X]: closed-system []: not stated []
Species:	Microcystis aeruginosa (algae)
Exposure Period	96 hours
Exposure renou.	70 H0415

Effect Criteria:	Growth rate		
Results:	$EC_{50} = 0.9 \text{ mg/L}$		
Analytic Monitoring:	Yes []; No [X]; ? []		
Method:	The test species was cultured following the procedures of USEPA 1971. Temperature was maintained at $24 \pm 2^{\circ}$ C. Water chemistry was determined at least once during each test according to Standard Methods (APHA 1985). EC50 values were calculated using the method of Larson and Schaeffer (1982) or graphical interpolation.		
GLP:	Yes []; No [X]; ? []		
Test Substance:	C_{12} LAS; average molecular weight = 345		
Remarks:	Mean hardness was 137 mg/L as CaCO ₃ , pH range was 6.8-7.2, and the mean dissolved oxygen was 9.1 mg/L. Comparison was also made to <i>in situ</i> studies conducted in which lake water was bottled and suspended in Lake Acton (Ohio) for 3 hour periods. The mean 3-h EC ₅₀ (photosynthesis) for the <i>in situ</i> studies was 3.4 mg/L (0.5-8.0 mg/L). The NOEC normalized by van de Plassche et al. (1999) to C _{11.6} LAS was 0.35 mg/L. Using the acute to chronic ratio calculation (documented in Annex 3 of the LAS SIAR), the EC ₅₀ /3 for <i>Microcystis</i> is 0.3 mg/L. This is a critical study for this SIDS endpoint.		
Reference:	Lewis, M.A. and Hamm, B.G. 1986. Environmental modifications of the photosynthetic response of Lake Plankton to surfactants and significance to a laboratory-field comparison. Wat. Res. 20:1575-1582.		
Reliability:	2 Valid with restrictions		
(t)			
Type of Test:	Static []; semi-static []; flow-through [] Open-system []; closed-system []; not stated [X]		
Species:	Plectonema boryanum (algae); strain 597		
Exposure Period:	not stated		
Effect Criteria:	Growth rate		
Results:	NOEC = 20 mg/L		
	LOEC = 30 mg/L		
Analytic Monitoring:	Yes []; No []; ? [X]		
Method:	LAS concentrations of 1, 5, 10, 15, 20 and 30 mg/L were prepared in Deionized, sterilized double-distilled glass water. Algae were grown in Bold's medium.		
GLP:	Yes []; No [X]; ? []		
Test Substance:	$C_{11,2}$ LAS		
Remarks:	Growth rate was reduced at 30 mg/L concentrations of LAS as indicated by spectrophotometer readings and dry weight. The NOEC normalized by van de Plassche et al. (1999) to $C_{11.6}$ LAS was 15 mg/L.		
Reference:	Dhaliwal, A.S., Campione, A., and Smaga, S. 1977. Effect of linear alkylbenzene sulfonate ($C_{11.2}$ LAS) on the morphology and physiology of <i>Plectonema boryanum</i> and <i>Chlamydomonas reinhardi</i> . J. Phycol. 12:18.		
Reliability:	4 Not assignable This study was given a reliability score of 4 because the document reviewed was an abstract. However, these data were considered reliable as part of a weight-of-evidence approach in the analysis conducted by van de Plaasche et al. (1999).		

4.4 TOXICITY TO BACTERIA

(a)	
Type:	Aquatic [X]; Field []; Soil []; Other []
Species:	activated sludge
Exposure Period:	3 hour
Results:	EC_{50} (Na LAS- C_{11}) = 760 mg/L
	EC_{50} (Na LAS- $C_{11.6}$) = 550 mg/L
	EC_{50} (Na LAS- C_{13}) = 650 mg/L
Analytical monitoring:	Yes [] No [X] ? []
Method:	OECD 209 Activated Sludge Respiration Inhibition Test. 1984.
GLP:	Yes [X] No [] ? []
Test substance:	Three different alkyl chain lengths of LAS (C_{11} , $C_{11.6}$, C_{13} sodium salts), with the following homologue distributions.

	Alkyl Chain Length Distributions (%)			
	LAS C ₁₁	LAS C _{11.6}	LAS C ₁₃	
<c<sub>10</c<sub>	1.5	0.4		
C ₁₀	29.0	8.9	1.0	
C ₁₁	39.0	33.7	3.5	
C ₁₂	28.5	31.0	17.8	
C ₁₃	1.8	24.0	37.0	
C ₁₄	0.2	2.0	40.4	
>C ₁₄			0.3	
LAS MW (as Na-LAS)	334	343	363	

Remarks: The purpose of the study was to determine the toxicity of three commercial LAS products to the activated sludge of a treatment plant basically operating on domestic sewage. A contact time of 3 hours instead of 15 minutes was chosen to better simulate the real residence time used in wastewater treatment plants (4-6 hours). The EC₅₀ values are far above environmental concentrations and therefore provide a high margin of safety. The 3-hour EC_{50} range for the reference substance (3,5dichlorophenol) ranged from 20-30 mg/L, within the valid range of 5-30 mg/L. Reference: Verge C. and Moreno, A. 1996b. Toxicity of anionic surfactants to the bacterial population of a waste water treatment plant. Tenside Surf. Det. 33:323-327. 2 Valid with restrictions Reliability: (b) Type: Aquatic [X]; Field []; Soil []; Other [] Species: activated sludge **Exposure Period**: 3 hour Results: EC_{50} (Na LAS- C_{10}) = 1042-1200 mg/L EC_{50} (Na LAS- C_{11}) = 740-782 mg/L EC_{50} (Na LAS- C_{12}) = 500-723 mg/L EC_{50} (Na LAS- C_{13}) = 700-795 mg/L EC_{50} (Na LAS- C_{14}) = 900-1045 mg/L Analytical monitoring: Yes [] No [X] ? [] Method: OECD 209 Activated Sludge Respiration Inhibition Test. 1984. GLP: Yes [X] No [] ? []

Test substance:

Five different pure homologues of LAS (C_{10} , C_{11} , C_{12} , C_{13} , C_{14} sodium salts), with the following homologue distributions.

	Pure Homologues (%)				
	LAS C ₁₀	LAS C ₁₁	LAS C ₁₂	LAS C ₁₃	LAS C ₁₄
<c<sub>10</c<sub>	0.5		0.4		
C ₁₀	96.8	5.5	13.9	0.7	
C ₁₁	2.7	93.7	84.5	9.8	0.6
C ₁₂		0.8	1.2	78.3	1.0
C ₁₃				11.2	15.4
C ₁₄					82.1
>C ₁₄					0.9
LAS MW (as Na-LAS)	320.7	333.7	346.4	362.3	373.7

Remarks: The purpose of the study was to determine the toxicity of five pure homologues of LAS to the activated sludge of a treatment plant basically operating on domestic sewage. A contact time of 3 hours instead of 15 minutes was chosen to better simulate the real residence time used in wastewater treatment plants (4-6 hours). The EC₅₀ values are far above environmental concentrations and therefore provide a high margin of safety. The 3-hour EC₅₀ range for the reference substance (3,5dichlorophenol) ranged from 20-30 mg/L, within the valid range of 5-30 mg/L. Verge C. and Moreno, A. 1996b. Toxicity of anionic surfactants to the Reference: bacterial population of a waste water treatment plant. Tenside Surf. Det. 33:323-327. Reliability: 2 Valid with restrictions

(c)

(\mathbf{c})	
Type:	Aquatic [X]; Field []; Soil []; Other []
Species:	activated sludge
Exposure Period:	15 minute
Results:	$EC_{50} = 107-152 \text{ mg/L}$
Analytical monitoring:	Yes [] No [X] ? []
Method:	ESD-VIII-D-1, Issue II (9/8/80)
GLP:	Yes [] No [X] ? []
Test substance:	C ₁₀₋₁₃ LAS (CAS #68411-30-3)
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Huels
	AG judged study quality to be good. Effect: inhibition of respiration.
	Nominal concentrations (expected deviation <20%). Mixed Liquor
	Suspended Solids 53.6-76.1 mg/g VSS/Sewage. Static, 25°C. Activated
	sludge (2600 mg SS/L)
Reference:	European Commission. 2000s. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs.,
	sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble,
	1991, 27896, 27897, 27915.
Reliability:	4 Not assignable. The original study was not available for review.
	Summary included for competeness.
(d)	
Туре:	Aquatic [X]; Field []; Soil []; Other []
Species:	Pseudomonas putida (Bacteria)

Exposure Period:	18 hour		
Results:	$EC_{50} = 60.9-63.5 \text{ mg/L}$		
	$EC_{10} = 52.7-56.6 \text{ mg/L}$		
Analytical monitoring:	Yes [] No [X] ? []		
Method:	Bacterial toxicity test according to DIN 38412 part 8. A total of e		
	concentrations were tested (40-80 mg/L) under GLP conditions.		
GLP:	Yes [X] No [] ? []		
Test substance:	Marlon A 390 (CAS #68411-30-3) C ₁₀₋₁₃ LAS, average alkyl chain length		
	= 11.6; activity 91.3%,		
Remarks:	Results show EC_{50} and EC_{10} values for two tests.		
Reference:	Scholz, N. 1993. Bestimmung der bacterientoxizitat von Marlon A 390 in		
	Pseudomonas-zellvermehrungs-Hemmtest. Huels-Final Report No. PZ-		
	93/10.		
Reliability:	2 Valid with restrictions		
(e)			
Туре:	Aquatic [X]; Field []; Soil []; Other []		
Species:	Pseudomonas putida (Bacteria)		
Exposure Period:	30 minute		
Results:	$EC_{50} = 350 \text{ mg/L}$		
	$EC_0 = 250 \text{ mg/L}$		
Analytical monitoring:	Yes [] No [] ? [X]		
Method:	DIN 38412 Teil 27 (respiration inhibition test)		
GLP:	Yes [] No [X] ? []		
Test substance:	Marlon A 350 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length		
	= 11.6		
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Data		
Defense	refer to 100% active ingredient.		
Reference:	European Commission. 2000b. Benzenesultonic acid, C_{10-13} -aikyl derivs.,		
	sodium saits. Year 2000 CD-ROM edition, citing Henkel KGaA,		
Daliahilitzy	4 Not assignable		
Reliability:	4 Not assignable		
(f)			
Туре:	Aquatic [X]; Field []; Soil []; Other []		
Species:	Pseudomonas putida (Bacteria)		
Exposure Period:	16 hour		
Results:	$EC_{50} = 150 \text{ mg/L}$		
	$EC_0 = 50 \text{ mg/L}$		
Analytical monitoring:	Yes [] No [] ? [X]		
Method:	DIN 38412 Teil 8 (cell multiplication inhibition test)		
GLP:	Yes [] No [X] ? []		
Test substance:	Marlon A 350 (CAS #68411-30-3) C ₁₀₋₁₃ LAS, average alkyl chain length		
	= 11.6		
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Data		
	refer to 100% active ingredient		
Reference:	European Commission. 2000b. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs.,		
	sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA,		
N 11 1 11	unpublished results (Registry No. 5929).		
Reliability:	4 Not assignable		

Туре:	Aquatic [X]; Field []; Soil []; Other []			
Species:	Pseudomonas putida (Bacteria)			
Exposure Period:	30 minute			
Results:	NOEC = 64 mg/L			
Analytical monitoring:	Yes [] No [X] ? []			
Method:	DIN 38412, Teil 27			
GLP:	Yes [] No [] ? [X]			
Test substance:	C_{10-13} LAS, average chain length 11.8 (CAS #68411-30-3)			
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Synthetic water; static; pH $7.2^+/-0.2$; 20°C. Effect: Inhibition of oxygen consumption.			
Reference:	European Commission. 2000a. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KgaA.			
Reliability:	4 Not assignable			
(h)				
Туре:	Aquatic [X]; Field []; Soil []; Other []			
Species:	Pseudomonas putida (Bacteria)			
Exposure Period:	16 hour			
Results:	NOEC = 30 mg/L			
Analytical monitoring:	Yes [] No [X] ? []			
Method:	DIN 38412, Teil 8			
GLP:	Yes [] No [] ? [X]			
Test substance:	C ₁₀₋₁₃ LAS, average chain length 11.8 (CAS #68411-30-3)			
Remarks:	Synthetic medium; static; pH 7.4 ⁺ /-0.3; 21°C. Effect: growth inhibition. Feitjel et al. reviews this study and also reports an NOEC = 35 mg/L for $C_{11.6}$ LAS.			
Reference:	Feijtel, T.C.J., Matthijs, E., Rottiers, A., Rijs, G.B.J., Kiewiet, A., and de Nijs, A. 1995. AIS/CESIO environmental surfactant monitoring programme. Part 1: LAS monitoring study in "de Meer" STP and receiving river "Leidsche Rijn" Chemosphere 30:1053-1066.			
Reliability:	4 Not assignable			
(i)				
Results:	Based on digester performance, even a high and atypical concentration of LAS (30 g/kg) did not inhibit microbial populations present in STP activated sludge digesters.			
Remarks:	The study was designed to monitor LAS during the different steps of 9 different standard sewage treatment plants operating mainly with domestic sewage. LAS-specific analytical methods were used. More details on the study can be found in the summary at 3.2(f).			
Reference:	Berna, J.L., de Ferrer, J., Moreno, A., Prats, D. and Ruiz Bevia, F. 1989. The fate of LAS in the environment. Tenside Surf Det 26:101-107			
Reliability:	4 Not assignable. Treatment plant operational records are not available for review.			

4.5 CHRONIC TOXICITY TO AQUATIC ORGANISMS

4.5.1 CHRONIC TOXICITY TO FISH

(a)

Type of Test:	Static []; semi-static [X]; flow-through []		
	Open-system [X]; closed-system []; not stated []		
Species:	Brachydanio rerio (Zebra Fish, fresh water)		
Exposure Period:	14 days		
Effect Criteria:	Mortality, behavior		
Results:	NOEC = 2.0 mg/L		
	LOEC = 4.0 mg/L		
Analytic Monitoring	Yes []: No [X]: ? []		
Method:	Based on UBA-Verfahrensvorschlag Verlaengerter Toxizitaetstest heim		
inculou.	Zehrahaerhling <i>Brachydania reria</i> Bestimmung der		
	Schwellenkonzentration der letalen und anderer Wirkungen NOEC		
	mindestnes 14 Tage This method conforms with OECD Guideline 204		
	Ten fish were exposed to each of seven concentrations $(0.2, 0.4, 0.8, 1.6)$		
	2.0.4.0 and 8.0 mg/L) and the controls Test chambers were 10 L besins		
	2.0, 4.0 and 8.0 mg/L) and the controls. Test chambers were 10-L basins		
	a 16.8 light dark illumination avala. The NOEC normalized by you do		
	a 10.6 light dark multimation cycle. The NOEC normalized by valide $\frac{1}{2}$		
CI D.	Plassche et al. (1999) to $C_{11.6}$ LAS was 2.5 mg/L.		
GLP:	Yes []; No [X]; ? []		
Test Substance: Marlon	A 350 LAS (CAS #68411-30-3; Benzenesulfonic acid, C_{10-13} - alkyl		
- 1	derives., sodium salts, 25.7% activity)		
Reference:	Henkel KGaA, Biological Research and Product Safety/Ecology:		
	unpublished results (Test substance number F1 5959).		
Reliability:	2 Valid with restrictions. Duration of test considered too short for a		
	chronic study, therefore not included in SIAR Table 12A.		
(b)			
Type of test:	static []; semi-static []; flow-through [X]; other []		
	open-system [X]; closed-system []		
Species:	Pimephales promelas (Fish, fresh water)		
Exposure period:	30 day		
Effect criteria:	Fry survival		
Results:	NOEC = 1 mg/L		
	LOEC = 2 mg/L		
Analytical monitoring:	Yes [X] No [] ? [] HPLC		
Methods:	Two replicates of 100 egg-fry stage fathead minnows were exposed for 30		
	days to LAS under the following conditions: Hardness 41 mg/L as		
	CaCO ₃ ; pH 7.2; temperature 24°C. The exchange rate was 1 to 3 volume		
	changes/day. Test chambers were 3500 mL volume. The studies were		
	conducted at EG&G Bionomics (now Springborn Smithers Laboratory).		
GLP:	Yes [] No [] ? [X]		
Test substance	Commercial $C_{10,12}$ LAS sodium salt (CAS #68411-30-3): C_{10} 5% C_{11}		
	27% C ₁₂ 53% C ₁₂ 13% ² 2-nhenyl 23%		
Remarks [.]	Carboxylated intermediates formed in the biodegradation of LAS exhibit		
remarks.	toxicity several orders of magnitude less than LAS: LC _{co} values were		
	>144 mg/L and >52 mg/L for sulforhenvel butarate and sulforhenvel		
	undecanoate respectively. NOEC based on fry survival Eag batchability		
	and fry growth were less sensitive. This is a key study for abranic aquatio		
	and ity growin were ress sensitive. This is a key study for chronic aqualic toxicity to fish (see SIAD Table 12)		
Pafaranaa:	Swisher DD Cladhill WE Vimerle DA and Tauli: TA 1079		
Reference.	Swisher, K.D., Oleunin, W.E., Killette K.A. and Taulii, I.A. 1978.		
	Carboxyrated intermediates in the biodegradation of linear alkylbenzene		
	suitonates (LAS). VII International Congress on Surface Active Substance,		
	Proceedings, Moscow, 1970 4:218-230.		

Reliability:	2 Valid with restrictions	
(c)		
Type of Test:	Static []; semi-static [X]; flow-through [] Open-system [X]; closed-system []; not stated []	
Species:	Poecilia reticulata (Fish, Guppy, fresh water)	
Exposure Period:	28 days	
Effect Criteria:	Mortality, behavior, and growth	
Results:	NOEC = 3.2 mg/L	
	LOEC = 10 mg/L	
Analytic Monitoring:	Yes []; No [X]; ? []	
Method:	Fish were 3-4 weeks old at test initiation. Fifty fish were used per group.	
	Temperature was maintained at $23 \pm 2^{\circ}$ C. The test volume (10-L per	
	chamber) was renewed three times per week. Circadian lighting (16:8	
	light:dark) was used. Fish were fed a Tetramin/Tetraphyll mixture.	
	Dissolved oxygen, water hardness and pH were measured during the	
	study.	
GLP:	Yes []; No []; ? [X]	
Test Substance:LAS, ²	42.4% activity (C ₈ <1%, C ₉ 16.5%, C ₁₀ 23%, C ₁₁ 20%, C ₁₂ 18%, C ₁₃ 16%,	
D 1	C_{14} 6.5%); average = $C_{11.1}$	
Remarks:	The only effect (98% mortality at 10 mg/L) occurred within 2 days of	
	study initiation. The NOEC normalized by van de Plassche et al. (1999) to $C = LAS mag/L$	
Deference:	$10 C_{11.6} LAS Was 5.2 mg/L.$	
Reference.	vashing products: Their toxicity and biodegradability in the equation	
	environment	
Reliability:	2 Valid with restrictions. Duration of test considered too short for a	
Rendonity.	chronic study therefore not included in SIAR Table 12A	
	entonie study, dieletore not meruded in Shak ruble 12/4.	
(d)		
Type of Test:	Static []; semi-static []; flow-through [X]	
	Open-system [X]; closed-system []; not stated []	
Species:	Oncorhynchus mykiss (Fish, Rainbow Trout, fresh water)	
Exposure Period:	14 days	
Effect Criteria:	Mortality	
Results:	$14 \text{ day } \text{LC}_{50} = 0.12 \text{ mg/L}$	
Analytic Monitoring:	Yes []; No []; ? [X]	
Method:	Rainbow trout at different developmental stages (egg [160-200 eggs per	
	concentration], alevin with partially absorbed yolk sac [2-3 days old],	
	alevin [60 days old], and adult [270-300 days old]) were exposed to LAS	
	for 14 days. Temperature was maintained at about 15°C, dissolved	
	oxygen at greater than 80% of saturation, pH at 7.3-7.4, and water	
CI D.	naraness of 290-310 mg/L as $CaCO_3$.	
ULP: Test Substance: C I A	$\begin{array}{c} Y \in S[\], \ NO[\], \ [A] \\ S = 450/ \ optimizer \end{array}$	
Test Substance. C_{12} LA	The age was the most consitive life stage in the 14 day tests in contract to	
Remarks.	The egg was the most sensitive file stage in the 14 day tests, in contrast to the 24 hour tests, which showed the agg to be the least consistive (eleving	
	with partially absorbed yolk say were the most sensitive in the 24 hour	
	tests) Malformations were seen only in embryos treated with lated	
	concentrations A NOFC value was not determined in the study and the	
	data provided are inadequate to calculate an FC_{22} value	
	\mathbf{r}	

Reference: Reliability:	Vailati, G., Calamari, D. and Marchetti, R. 1975. Effetti dell'alchilbenzene sofonato (LAS) sugli staid di sviluppo del <i>Salmo gairdneri</i> Rich. Istituto di Ricerca sulle Acque (CNR) Sezione di Idrobiologia Applicata (Milano). 2 Valid with restrictions. Duration of test considered too short for a
,	chronic study, therefore not included in SIAR Table 12A.
(e)	
Type of Test:	Static [X]; semi-static []; flow-through []
Spacios	Open-system [X]; closed-system []; not stated []
Exposure Period	90 davs
Effect Criteria:	Feeding, growth rate, fecundity, yield
Results:	NOEC = 0.25 mg/L
	LOEC = 0.51 mg/L
Analytic Monitoring:	Yes []; No []; ? [X]
Method:	Tests generally followed the standard methods of APHA 1975, with the
	diameter 30 cm mean denth) containing 60 L of borehole water and 5 kg
	of uncontaminated soil Borehole water is unchlorinated water with the
	following parameters: pH 7.1 ± 0.1 , dissolved oxygen 10 mg/L, hardness
	290 mg/L as CaCO3, and temperature 27.9 ± 0.14 °C. Fifteen fish
	purchased from local farms (35 mm, 0.786 g) and acclimated to the test
	conditions for 168 hours were added per vat. Test concentrations were
	0.25, 0.58, 0.51, and 1.10 mg/L. Fish were fed daily with a 1:1 mixture of
	rice bran and mustard oil cake. Standard acute toxicity tests were also
	conducted in the laboratory. Statistical analysis was done using F and t
	tests and the significance of any change was measured at a 5% level of
	probability.
GLP:	Yes []; No [X]; ? []
Test Substance:LAS (F	arnol J Liquid), 20% activity; clear yellow liquid; pH in solution was 8 ± 1 The feeding rates decreased significantly at 0.25, 0.28 and 1.10 mg/l
Remarks.	Fish showed erratic behaviour irregular opercular movement and at
	higher concentrations blood exuded from the base of the pectoral and
	pelvic fins and head. No apparent difference in condition factor (K) was
	observed at any concentration. The maturity index (MI) of both male and
	female fish appeared to decrease at all concentrations, but the biological
	significance of this is questionable because historic control values for this
	parameter were not provided and the magnitude of the response did not
	mg/L. The gastrosomatic index (GSI) was significantly different at 0.51
	and 1.10 mg/L. Based on the most reliable endpoints (GSI and fecundity).
	the NOEC would be 0.38 mg/L and the LOEC would be 0.51 mg/L.
	However, the study is incompletely documented, so details of the test
	substance composition and testing procedure are uncertain. True
	replicates were not used so statistics can not be validly conducted, though
	iney are reported by the authors. In view of these limitations, and
	mg/L (van de Plassche et al. 1999) a conservative (protective) NOEC for
	this study is 0.25 mg/L. This is a critical study for this SIDS endpoint.

Reference:	Chattopahyay, D.N. and Konar, S.K. 1985. Acute and chronic effects of linear alkyl benzene sulfonate on fish, plankton, and worm. Environment & Ecology, 3:258-262.
Reliability:	2 Valid with restrictions.
(f)	
Type of test:	Various types and durations of tests.
Results:	The article compiles the no observed effect concentration (NOEC) values for many tests conducted on an assortment of species. The following table
	shows the geometric mean NOEC values for each fish species (n = number of studies included for each species).

Species	Geometric mean NOEC (mg/L)	Ν
Brachydanio rerio	2.3	1
Pimephales promelas	0.87	14
Poecilia reticulate	3.2	1
Oncorhynchus mykiss	0.34	7
Tilapia mossambica	0.25	1

Remarks:	All data were from tests conducted on commercial LAS with C_{10-13} alkyl chains and average carbon lengths close to $C_{11.6}$ and $C_{11.8}$. The NOEC values have been normalized using QSARs to the average structure of C_{11} LAS
Reference:	van de Plassche, E.J., DeBruijn, J.H.M., Stephenson, R.R., Marshall, S.J., Feijtel, T.C.J., and Belanger, S.E. 1999. Predicted no-effect concentrations and risk characterization of four surfactants: Linear alkyl benzene sulfonate, alcohol ethoxylates, alcohol ethoxylated sulfates, and
Reliability:	 soap. Environ. Toxicol. Chem. 18: 2653-2663. 4 Not assignable This study was given a reliability score of 4 because the original reports reviewed by the authors were not directly reviewed in the compilation of this robust summary.
(g) (Rainbow trout)	
Type of test:	<pre>static []; semi-static []; flow-through [X]; other []; open-system [X]; closed-system []</pre>
Species:	Salmo gairdneri (Oncorhyncus mykiss, fish, estuary, fresh water)
Endpoint:	Length of fish []; Weight of fish []; Reproduction rate []: Other [V] Growth
Exposure period:	28 day
Results:	NOEC = 0.43-0.89 mg/J
Analytical monitoring:	$V_{PS} \begin{bmatrix} 1 \\ N_0 \end{bmatrix} \begin{bmatrix} \mathbf{X} \end{bmatrix} 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
Method:	Crossland NO
GI P.	$Ves \begin{bmatrix} 1 & No \end{bmatrix} 2 \begin{bmatrix} \mathbf{X} \end{bmatrix}$
Test substance.	$C_{10,12}$ LAS (CAS #68411-30-3)
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Mean
	NOEC: 0.62 mg/1 (2 tests). Huels AG judged study quality to be good. Tap water with hardness 84-153 mg/L CaCO ₃ ; pH 7.1-8.7; flow-through; 14-16°C; age of fish at start of study: 6 months.
Reference:	European Commission. 2000k. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, CT/R153/01, CT/R153/06.
Reliability:	4 Not assignable. The original studies were not available for review.
August 11, 2005	105
(h)	
------------------------	--
Type of test:	<pre>static []; semi-static []; flow-through [X]; other []; open-system [X]; closed-system []</pre>
Species:	Salmo gairdneri (Fish, estuary, fresh water)
Endpoint:	Length of fish []; Weight of fish [];
*	Reproduction rate []; Other [X] Growth, Hatching, Survival
Exposure period:	70 day
Results:	NOEC = 0.23 mg/L
Analytical monitoring:	Yes [X] No [] ? []
Method:	Unilever Research Protocol, Early Life Stage (ELS) test.
GLP:	Yes [] No [] ? [X]
Test substance:	C ₁₀₋₁₃ LAS (CAS #68411-30-3)
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Huels
	AG judged study quality to be good. Tap water with hardness 70-133
	mg/L CaCO ₃ ; pH 7.3-7.8; flow-through; 8.5-11.5°C; life-stage: ELS.
Reference:	European Commission. 2000j. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs.,
	sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble,
	1991, CT/R118/03.
Reliability:	4 Not assignable. The original study was not available for review.
(i)	
(I) Type of test:	static []: sami static []: flow through [V]: other []: onen system [V]:
i ype of test.	static [], senii-static [], now-unough [A], other [], open-system [A],
Spacias:	Salmo gairdnari (Fish estuary fresh water)
Endnoint:	Length of fich []: Weight of fich []:
Enupoint.	Reproduction rate [1]: Other [X] Growth Hatching Survival
Exposure period	70 day
Results.	NOFC = 0.3-0.35 mg/L
Analytical monitoring	Yes [] No [X] ? []
Method [.]	Unilever Research Protocol
GLP.	Yes [] No [] ? [X]
Test substance:	$C_{10,13}$ LAS (CAS #68411-30-3)
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Mean
	NOEC: 0.32 mg/1 (2 tests). Huels AG judged study quality to be good.
	Nominal concentrations (expected <20%). Tap water with hardness 64-
	159 mg/L CaCO ₃ ; pH 6.6-8.0; flow-through; 7.5-15 °C; life-stage; ELS
Reference:	European Commission. 2000l. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs.
	sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble,
	1991, CT/R89/01, CT/R89/02.
Reliability:	4 Not assignable. The original studies were not available for review.
(j) (Fathead Minnow)	
Type of test:	static []; semi-static []; flow-through []; other [X]; open-system [X];
Cussian	closed-system []
Species:	Pimephales prometas (Fish, Iresh water)
Enapoint:	Length of fish []; weight of fish [];
Europuro naria d.	Reproduction rate []; Other [A] Survival
Exposure period:	170 uay NOEC = 0.62 mg/L \cdot LOEC = 1.2 mg/L (based on effects on first survival).
results.	100EU = 0.05 IIIg/L, $LOEU = 1.2 IIIg/L$ (based on effects on IIY SurViVal) Hotohobility and growth were not significantly effected
Analytical manitories	Vas [1] Na [1] 2 [V]
maryucar monitoring.	

Method:	Either a serial or proportional dilution unit was used to provide continuous exposures to fathead minnows. Each of the four test concentrations plus control received 12 randomly assigned fish obtained from ponds at the Newtown Fish Farm, Ohio Division of Wildlife. Pieces of half-tile were placed in each 10-gal aquarium for spawning sites. After spawning had been completed, the cluster of eggs was removed and counted. Four replicates of 100 eggs from each concentration were reared for 14 days and mortality of eggs and fry recorded daily. Mean dissolved oxygen, water hardness, and pH ranged from 5.84-6.42 mg/L, 194-214 mg/L CaCO ₃ , and 7.50-7.95, respectively. Test concentrations were 0.34, 0.63, 1.2 and 2.7 mg/L.
GLP:	Yes [] No [] ? [X]
Test substance:	LAS, activity: 60.8% ; equivalent MW = 348
Reference:	Pickering, Q.M. and Thatcher, T.O. 1970. The chronic toxicity of linear alkylate sulphonate (LAS) to <i>Pimephales promelas</i> Rafinesque. Water Pollut. Control Fed. 42:243-254.
Reliability:	2 Valid with restrictions
(k)	
Type of test:	static [X]; semi-static []; flow-through []; other []
a :	open-system [X]; closed-system []
Species:	Pimephales promelas (Fish, fresh water)
Exposure period:	28 day
Results:	NOEC $(C_{11.8}) = 0.9 \text{ mg/L}$
A	NOEC $(C_{13}) = 0.15 \text{ mg/L}$
Analytical monitoring:	Yes [] NO [] ? [A]
GLP:	Yes [] NO [] ? [A]
Test substance:	C ₁₀₋₁₃ LAS (CAS #68411-30-3), average chain lengths 11.8 and 13
Remarks.	observations were made of the number of spawnings, total eggs produced,
Reference:	Maki A W 1070 Correlations between Danknig magna and fathead
Kelefence.	minnow (<i>Pimenhales promelas</i>) chronic toxicity values for several
	classes of test substances I Fish Res Bd Can 36 411-421
Reliability.	4 Not assignable. This study was given a reliability score of 4 because the
itenaenty.	publication is a summary of previous tests and the original study reports
	were not available for review.
(1)	
Type of Test:	Static []; semi-static []; flow-through []
	Open-system []; closed-system []; not stated [X]
Species:	Pimephales promelas (Fish, Fathead Minnow, fresh water)
Exposure Period:	Up to 30 days post-hatch
Effect Criteria:	Embryolarval/fry survival
Results:	NOEC = 1.02 mg/L
Analytic Monitoring:	Yes []; No []; ? [X]
Method:	The publication summarizes the results of a series of critical life stage
	(embryolarval) tests, which are defined as exposure during the
	emoryogenic period (incubation of the eggs), followed by exposure of fry
	for a period of 30-days after natching for warm water fish with
CI D.	emotyogenic periods ranging from 1 to 14 days.
ULP: Tost Substance: C I A	I = [J, NO[J]; [A]
Test Substance: $C_{11.7} LP$	As (commercial biend of C_{10} 670, C_{11} 2970, C_{12} 3470, C_{13} 2970)

Remarks: Reference:	All of the original studies summarized in this publication were conducted at EG&G Bionomics (now Springborn Smithers Labs) using standard protocols. The minimum threshold concentration, defined as the lowest concentration causing significant effect on any parameter, was reported as $>1.02 \text{ mg/L} < 2.05 \text{ mg/L}$. The NOEC normalized by van de Plassche et al. (1999) to C _{11.6} LAS was 1.1 mg/L. Macek, K.J. and Sleight, B.H. III. 1977. Utility of toxicity tests with
	embryos and fry of fish in evaluating hazards associated with the chronic toxicity of chemicals to fishes. Aquatic Toxicology and Hazard Evaluation, ASTM STP 634. Mayer, F.L. and Hamelink, J.L, Eds. American Society for Testing and Materials, pp. 137-146.
Reliability:	4 Not assignable. This study is given a reliability of 4 because the publication is a summary of previous tests and the original study reports were not available for review.
(m)	
Type of test:	<pre>static []; semi-static []; flow-through [X]; other [] open-system [X]; closed-system []</pre>
Species:	Lepomis macrochirus (Fish, fresh water)
Exposure period:	28 day
Results:	NOEC = 1.0 mg/L for bluegill LOEC = 2.0 mg/L
Analytical monitoring: Method:	Yes [X] No [] ? [] The effect of LAS on the structure and function of microbial communities was studied in a flow-through model ecosystem containing several trophic levels. Duplicate 19-L glass aquaria containing model ecosystems at four nominal concentrations (0.5, 1.0, 2.0, 4.0 mg/L) contained water and 2.5 cm lake sediment (Winton Lake, Cincinnati, OH) and several trophic levels (bacteria, algae, macrophytes [<i>Elodea canadensis,Lemna minor</i>], macroinvertebrates [<i>Daphnia magna, Paratanytarsus parthenogenica</i>], and fish [<i>Lepomis macrochirus</i>]). Flow rate in the proportional diluter delivered approximately 8 replacement volumes per day. Additionally, at each cycle of the diluter, 1.5 mL of a Daphnia food suspension diluted with a culture of <i>Selenastrum</i> was added to each chamber. Following an initial 3 day acclimation period to analytically confirm test concentrations, 4 glass periphyton slides (5 x 5 cm), 8 vegetative shoots of <i>Elodea</i> , 10 early instar <i>Daphnia</i> , 25 midge eggs and 5 pre-weighed juvenile bluegills (2.5-5.0 cm length) were added to each aquarium. Fish were screened from access to the macroinvertebrates by a 60 mesh stainless steel screen and were fed a daily supplement of frozen brine shrimp. Test duration was 28 days. Effects monitored included population and community effects. Nominal concentrations were confirmed with MBAS analysis.
GLP: Test substance:	Yes [] No [] ? [X] LAS; C^{14} -LAS chain length C_{12} (91% purity) plus unlabeled LAS with average chain length $C_{11.6}$ (C_{10} 9.7%, C_{11} 27.9%, C_{12} 54.4%, C_{13} 8.0%;
Remarks:	95% purity) (tested together) Dissolved oxygen concentrations ranged between 7.0 and 9.0 mg/L. Temperature was maintained at 2°C and the mean pH was 8.1 ± 0.2 . Bluegill fish growth was reduced at the 2.0 and 4.0 mg/L concentrations but not at 0.5 or 1.0 mg/L. Results for the other species and community parameters tested are summarized in Section 4.7 (i). Juvenile growth was the most sensitive fish endpoint in this model ecosystem study and thus is

	appropriate to use for chronic toxicity. This is a key study for chronic
	aquatic toxicity to fish (see SIAR Table 12).
Reference:	Maki, A.W. 1981. A Laboratory model ecosystem approach to
	environmental fate and effects studies. Unpublished Internal Report,
	Environmental Safety Department Procter and Gamble Company,
	Cincinnati, Ohio.
Reliability:	2 Valid with restrictions

4.5.2 CHRONIC TOXICITY TO AQUATIC INVERTEBRATES

Water-only Exposures

(a)				
Type of test:	<pre>static []; semi-static []; flow-through []; open-system []; closed-system</pre>			
	[]; not stated [X]			
Species:	Ceriodaphnia sp. (Crustacea)			
Endpoint:	Mortality []; Reproduction [X]			
Exposure period:	not stated			
Results:	NOEC = 3 mg/L			
Analytical monitoring:	Yes [] No [] ? [X]			
Method:	Standard laboratory methods.			
GLP:	Yes [] No [] ? [X]			
Test substance:	C ₁₁₇ LAS			
Remarks:	Further information regarding study conditions was not provided in this			
	peer-reviewed publication.			
Reference:	Kimerle, R.A. 1989. Aquatic and terrestrial ecotoxicology of linear			
	alkylbenzene sulfonate. Tenside Surfactants Detergents, 26:169-176.			
Reliability:	4 Not assignable. Data table cites an unpublished report by Procter &			
-	Gamble.			
(b)				
Type of test:	static []; semi-static [X]; flow-through []; open-system []; closed-system [X]; not stated []			
Species:	Ceriodaphnia sp. (Crustacea)			
Endpoint:	Mortality [X]; Reproduction [X]			
Exposure period:	7 day			
Results:	NOEC = 0.7 mg/L (geometric mean of two tests); 0.84 mg/L (normalized			
	for $C_{11,8}$ LAS)			
	NOEC = 0.5 mg/L (trout chow/algae diet)			
	$EC_{10} = 0.99 \text{ mg/L}$ (yeast diet); normalized $EC_{10} = 1.18 \text{ mg/L}$			
Analytical monitoring:	Yes [] No [X] ? []			
Method:	ASTM (Commotto 1982; Mount and Norberg 1983). Ceriodaphnia were			
	cultured individually in 50 mL beakers containing 30 mL culture water.			
	Two tests were conducted, representing animals fed with two different			
	diets (troutchow and algae - Selenastrum capricornutum - or baker's			
	yeast). They were acclimated to the test conditions and diet for two			
	generations before use in toxicity testing. Ten 50 mL beakers containing			
	30 mL of test solution were used for each test concentration. Nominal			
	concentrations were 0.5, 1.0, 2.0, 3.5, 5.0 and 7.0 mg/L plus controls.			
	Each beaker contained one Ceriodaphnia (for a total of 10 daphnids per			
	concentration). Tests were begun with neonate animals (<24 hours old)			

	and lasted seven days. The young were counted and removed from each		
	beaker daily. All test chambers were cleaned and renewed with fresh test		
	solution three times (on the second, fourth, and sixth day). Total water		
	hardness (Ohio river water) was 110 ± 9 mg/L as CaCO ₃ , pH was 7.4 ±		
	0.2, dissolved oxygen was 9.7 ± 0.8 mg/L, and total suspended solids was		
	87 ± 106.		
GLP:	Yes [] No [X] ? []		
Test substance:	$C_{11.8}$ LAS; activity 30.8%		
Results:	Ceriodaphnia fed trout chow/algae showed no dose-dependent response		
	for any endpoint, so no EC_{20} could be calculated. The NOEC is		
	considered to be 5.0 mg/L based on 100% mortality at 7.0 mg/L. Results		
	of the test run with the trout chow/algae diet are shown in the following		

LAS Concentration	Percent Mortality	Total Reproduction	1 st Day of Reproduction	Reproduction per Individual	Broods	Brood Size
0	10	87	4.7	9.7	2.4	4.0
0.5	0	69	5.0	6.9	2.1	3.4
1.0	10	32	5.6*	3.6*	1.4*	2.4*
2.0	0	42	5.0	4.2*	1.8	2.2*
3.5	0	82	5.6*	8.2	2.0	4.2
5.0	0	105	4.7	11.6	2.3	4.9
7.0	100*	15	4.0	5.0*	*	5.0

* Significantly different from the control (p < 0.05)

table:

Brood size and reproduction gave good dose-dependent responses for organisms fed yeast. Brood size was the most sensitive endpoint and resulted in an EC_{20} of 1.44 mg/L. Reproduction resulted in an EC_{20} of 2.70 mg/L. Results of the test run with the yeast diet are shown in the following table:

LAS Concentration	Percent Mortality	Total Reproduction	1 st Day of Reproduction	Reproduction per Individual	Broods	Brood Size
0	0	229	4.0	22.9	2.9	8.0
0.5	0	208	3.9	20.8	2.9	7.3
1.0	0	178	4.0	17.8	2.9	6.1*
2.0	10	145	4.0	16.1*	3.0	5.4*
3.5	10	78	4.4	8.7*	2.4	3.4*
5.0	10	8	6.6*	0.9*	0.6*	1.8*
7.0	100*	0	*	*	*	*

* Significantly different from the control (p<0.05)

Remarks: Later experience with *Ceriodaphnia* has shown that a yeast diet is not optimum for this species. A geometric mean of 2.68 mg/L can be calculated for the two tests. This is a critical study for this SIDS endpoint.
Reference: 1) Procter & Gamble. 2004. *Ceriodaphnia* sp. Chronic toxicity test. Unpublished report, September 9, 2004.
2) Comotto, R.M. 1982. Proposed standard practice for conducting renewal life cycle toxicity tests with Daphnia magna. Draft 1, August 1982, ASTM committee E-47. American Society for Testing and Materials, Philadelphia, PA.

Reliability:	 3) Mount, D.I. and Norberg, T.J. 1983. A seven-day life cycle cladoceran toxicity test. Pre-publication. USEPA (Duluth). 4) Snedecor, G.W. and Cochran, W.G. 1967. Statistical Methods. 6th Edition. Iowa State University Press, Ames, IA. 5) Versteeg, D.J., Belanger, S.E., and Carr, G.J. 1999. Understanding single-species and model ecosystem sensitivity: Data-based comparison. Environ. Toxicol. Chem. 18:1329-1346. 2 Valid with restrictions (actual exposure concentrations might have been
	less than nominal values; not GLP)
(c)	
Type of test:	static []; semi-static []; flow-through [X]; open-system []; closed-system [X]; not stated [] diluter sytem based on Mount and Brungs 1967
Species:	Daphnia magna. (Crustacea)
Endpoint:	Mortality []; Reproduction [X]
Exposure period:	21 day
Results:	NOEC = 1.18 mg/L
	LOEC = Not reported
Analytical monitoring:	Yes [X] No []? [] MBAS method
Method:	A modified 0.5-L proportional diluter was used to deliver four replicates
	to each of five test concentrations plus a control. No solvent was used.
	Five Daphnia (<12 hours old) were randomly assigned to each replicate.
	Daphnia were fed a suspension of ground trout chow and alfalfa daily.
	The dilution water was carbon and reverse osmosis filtered well water.
	Water quality parameters were measured at test initiation and at intervals
	of 3-5 days for the remainder of the test. Tests were run at 21 ± 1 °C,
	dilution water hardness 120 mg/L as CaCO ₃ , pH 7.4 \pm 0.2, and dissolved
	oxygen 8.5 ± 0.5 mg/L. F ₀ mortality was recorded at 24-h, 96-h, 7-d and
	daily thereafter. Total number of F_1 produced, mean brood size, and the
	percentage of days young were produced within each replicate was
	measured for all five concentrations and the controls. Mortality was
	evaluated using a computerized Probit procedure. The no effect
	concentration was determined as the highest measured concentration with
	no perceivable effects. This study was conducted in 1977
CI D.	No fel No [V] 2[]
ULF.	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
Test substance.	$C_{11.8}$ LAS, mean phenyl position 5.70, mean molecular weight – 545 The mean again indicator of remodustive inhibition was the total
Remarks:	The most sensitive indicator of reproductive inhibition was the total
	number of young produced. This is a key study for chronic aquatic
	toxicity to invertebrates (see SIAR Table 12).
Reference:	Makı, A.W. 1979. Correlations between Daphnia magna and fathead
	minnow (<i>Pimephales promelas</i>) chronic toxicity values for several classes
	of test substances. J. Fish. Res. Board Can. 36:411-421.
Reliability:	2 Valid with restrictions.
(d)	
Species:	Daphnia magna
Results:	NOEC = 1.4 mg/L (12 records)
Test Substance:LAS no	ormalized to C_{116}
Remarks:	NOEC is geometric mean of 12 records compiled from literature reviews
	and normalized to C ₁₁₆ .
Reference.	van de Plassche E.J. de Bruiin I.H.M. Stenhenson R.R. Marshall S.L.
	Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect

Reliability:	 concentrations and risk characterization of four surfactants: LAS, AE, AES, and soap. Environ. Toxicol. Chem. 18:2653-2663. 4 Not assignable. This study was given a reliability score of 4 because all the original reports reviewed by the authors were not directly reviewed in the compilation of this robust summary.
(e)	
Type of test:	<pre>static []; semi-static [X]; flow-through []; open-system []; closed- system []</pre>
Species:	Daphnia magna (Crustacea)
Endpoint:	Mortality [X]; Reproduction rate [X]
Exposure period:	21days
Results:	NOEC = 1.25-3.25 mg/L; LOEC = 2.25-3.75 mg/L Geometric Mean NOEC = 1.99 mg/L (mean of studies using 5 different diets)
Analytical monitoring:	Yes [] No [] ? [X]
Method:	ASTM proposed standard practice for conducting renewal life cycle toxicity tests with <i>Daphnia magna</i> . Draft No. 1, August 1982. Ten 250 m/L beakers were used for each test concentration. Seven beakers contained one daphnid each and three beakers contained five daphnids each, for a total of 22 daphnids per concentration. All conditions were maintained as per protocol.
GLP:	Yes [] No [] ? [X]
Test substance:	Commercial C_{10-13} LAS, average chain length $C_{11.8}$ (CAS #68411-30-3).
Remarks: Reference:	NOEC and LOEC values represent the range of results from five tests using different diets. Diet had at most a three-fold effect on the results, which is within the variation expected within the tests themselves. Therefore, results of different diets can be considered roughly equivalent to five replications of the same diet. This is a key study for chronic aquatic toxicity to invertebrates (see SIAR Table 12). Taylor, M.J. 1985. Effect of diet on the sensitivity of <i>Daphnia magna</i> to linear alkylbenzene sulfonate. In: Cardwell, R.D., Purdy, R. and Bahner, R.C. Aquatic Toxicology and Hazard Assessment. Seventh Symposium pp. 53-72 ASTM STP 854 America Society for Testing and Materials
	Philadelphia.
Reliability:	2 Valid with restrictions
(f)	
Type of test:	<pre>static []; semi-static [X]; flow-through []; open-system [X]; closed- system []</pre>
Species:	Daphnia magna (Crustacea)
Endpoint:	Mortality []; Reproduction rate [X]; Other []
Exposure period:	21 day
Results:	NOEC = 0.3 mg/L
Analytical monitoring:	Yes [] No [X] ? []
Method:	OECD Guide-line 202, part 2 "Daphnia sp., Reproduction Test
GLP:	Yes [] No [] ? [X]
Test substance:	C_{10-13} LAS, with average chain length of $C_{11.8}$ (CAS #68411-30-3)
Remarks:	Information as cited in IUCLID Data Sheet for CAS #68411-30-3. Natural water 3x weekly renewal pH 6.0-8.5; 20 ⁺ /-2 °C; life-stage: 6-24 h.
Reference:	European Commission. 2000a. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA.

Reliability:	4 Not assignable. The original study was not available for review.
(g) Type of test:	<pre>static []; semi-static [X]; flow-through []; other []; open-system []; closed-system []</pre>
Species:	Daphnia magna (Crustacea)
Endpoint:	Mortality []; Reproduction rate [X]; Other []
Exposure period:	21 day
Results:	NOEC = 0.3 mg/L
Analytical monitoring:	Yes [] No []? [X]
Method:	UBA – draft protocol
GLP:	Yes [] No [X] ? []
Test substance:	C ₁₀₋₁₃ , avg.: C _{11.6}
Remarks:	Huels AG judged study quality to be good. Semistatic; pH 8.0; life-stage: adult.
Reference:	European Commission. 2000d. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Huels AG, 2/87, N. Scholz unpublished
Reliability:	4 Not assignable. The original study was not available for review.
(h)	
Type of test:	static []; semi-static []; flow-through [X]; open-system []; closed-system [X]; not stated []
Species:	Paratanytarsus parthenogenica (Insecta, Midge)
Endpoint:	Reproduction and survival
Exposure period:	28 days
Results:	NOEC = 3.4 mg/L (from previous study)
A nalytical manitoring:	LOEC = 4.0 mg/L Vac [V] No [1, 2, 1]
Method:	It's [A] NU[] ? [] Initial experiments (Phase I) were designed to determine the effects of
GLP: Test substance:	Initial experiments (Phase I) were designed to determine the effects of LAS on the structure and function of model ecosystem communities. Each test concentration consisted of duplicate 19-L glass aquaria containing 2.5 cm of natural lake sediment and several trophic levels (bacteria, algae, macrophytes, macroinvertebrates, and bluegill sunfish). Dilution water was carbon and reverse-osmosis filtered well water of 120 mg/L as CaCO ₃ hardness. Four nominal concentrations of 0.5, 1.0, 2.0, and 4.0 mg/L were delivered to duplicate chambers by a modified Mount and Brungs proportional diluter. Fish were screened from access to invertebrates with a stainless steel screen. In Phase II, conditions were similar except that the model ecosystem aquaria were treated with LAS in sewage effluent (supplied from a CAS unit) to more closely simulate actual receiving water conditions. Yes [] No [X] ? []
Remarks:	Dissolved oxygen concentrations ranged between 7.0 to 9.0 mg/L with a mean of 7.8 mg/L during the Phase I studies. In Phase II, dissolved oxygen ranged between 3.1 and 7.3 mg/L (mean 5.4 mg/L), with the lowest values occurring in the chambers receiving the highest sewage effluent concentrations. Tempertures were maintained at $21 \pm 2^{\circ}$ C in both phases. The pH values were 8.1 ± 0.2 and 7.5 ± 0.3 for Phases I and II, respectively. No significant differences in the development and growth of

Reference:	 midge populations was observed in Phase I. Apparent inhibition of total population size was observed at the highest concentration (4.0 mg/L), where total individuals were 4100 as compared to 6300 in the controls. The results indicate that the effect concentrations after 28 days were found to be between 2.0 and 4.0 mg/L. This agrees with a previous 28-day study (Maki 1978) that resulted in a NOEC of 3.4 mg/L. 1) Maki, A.W. 1981. A laboratory model ecosystem approach to environmental fate and effects studies. Procter & Gamble Company. 2) Maki, A.W. 1978. Development of a chronic toxicity test wit the dipteran midge, <i>Paratanytarsus parthenogenica</i>. Presented at the Annual Meeting of the Entomological Society of America, Washington, DC, December
Reliability:	2 Valid with restrictions.
(i)	
Type of test:	static [X]; semi-static []; flow-through []; open-system [X]; closed-system []; not stated []
Species:	Brachionus calyciflorus (rotifer)
Endpoint:	Reproduction and survival
Exposure period:	2 days
Results:	$EC_{10} = 1.18 \text{ mg/L}$
	$EC_{20} = 1.4 \text{ mg/L} (95\% \text{ confidence intervals } 0.882-2.27 \text{ mg/L})$
A nalestical manifestina.	$EC_{50} = 2.0 \text{ mg/L} (95\% \text{ confidence intervals } 1./0-2.33 \text{ mg/L})$
Method:	It's [A] NO[] ?[] Chronic toxicity tests were performed by placing six newly batched (less
	equal mixture of green algae (a mixture of <i>Selenastrum capricornutum</i> and <i>Chlorella vulgaris</i>) at 1.0 x 10^6 cells/mL as food. Three replicates were used for each concentration and control, with additional replicates used for analytical verification of the test compound as needed. Tests consisted of four to six concentrations and appropriate controls. Concentrations up to the limit of solubility were tested. All test vessels were placed on a rotator (1/5 rpm) in a 16/8 h light:dark cycle under low light conditions at 25±2 °C. Dilution water was a 50/50 blend of locally obtained well water and deionized water and had mean water quality properties of pH 8.6, dissolved oxygen 8.5 mg/L, hardness 152 mg/L as CaCO ₃ , and conductivity 450 µmhos. Rotifers were counted after 48 h in all control and test concentration replicates. Since rotifers produce multiple broods in 48 hours, the endpoint for this study is effects on
	reproduction. The 48 h EC_{20} and EC_{50} values with associated 95% confidence intervals were estimated by an iterative nonlinear regression technique using SAS, version 6.0
GLP [.]	Ves [] No [X] ? []
Test substance:	C_{121} LAS, sodium salt: 92.3% purity
Remarks:	LAS was one of about 20 surfactants tested in separate tests as part of this study. While test concentrations were measured, they were not reported in the publication. The authors do note that concentrations decreased by 20 to 90% over the two-day test (depending on which surfactant was tested) and time-weighted averages exposure concentrations were used. NOEC or LOEC values were not reported.
Reference:	Versteeg, D.J., Stanton, D.T., Pence, M.A., and Cowan, C. 1997. Effects of surfactants on the rotifer, <i>Brachionus calyciflorus</i> , in a chronic toxicity
11 2005	11/

	test and the development of QSARs. Environ. Toxicol. Chem. 16:1051-1058.
Reliability:	2 Valid with restrictions. Duration of test may be too short for a chronic study, therefore not included in SIAR Table 12A.
(i)	
Type of test:	static []; semi-static []; flow-through [X]; open-system [X]; closed-
51	system []
Species:	Campeloma decisum (freshwater mollusc; operculate snail)
Endpoint:	Mortality [X]; Reproduction rate []; Other [X] mobility and feeding responses
Exposure period:	6 weeks
Results:	NOEC = 0.4 mg/L
	LOEC = 1.0 mg/L
Analytical monitoring:	Yes [X] No []?[]
Method:	Two 6-week chronic studies were performed in which an amphipod, a pulmonate snail, and an operculate snail were tested together. A serial diluter was used to provide continuous flow conditions into duplicate 4-gallon glass aquaria for each of five concentrations plus controls. Ten snails were placed in each of two replicate chambers per concentration. The frequency of snails crawling on the test chamber walls was recorded throughout the tests. Mean measured LAS concentrations were 0.2, 0.4, 1.0, 1.9, and 4.4 mg/L.
GLP:	Yes [] No [X] ? []
Test substance:	Commercial LAS formulation containing 14% LAS, 2.3% alcohol ethoxylate oxide condensate, 2.5% sodium soap, 48% sodium tripolyphosphate, 9.7% sodium silicate, 15.4% sodium sulphate, and 8.1% moisture and miscellaneous
Remarks:	Survival of <i>C. decisum</i> was affected only in the highest test concentration (4.4 mg/L) . Mobility and feeding responses were altered in LAS concentrations of 1.9 and 1.0 mg/L respectively.
Reference:	Arthur, J.W. 1970. Chronic effects on linear alkylbenzene sulfonate detergent on <i>Gammarus pseudolimnaeus</i> , <i>Campeloma decisum</i> and <i>Physa integra</i> . Water Res. 4:251-257.
Reliability:	4 Not assignable. Test substance is a formulation containing a mixture of materials, of which only 14% is LAS. The contribution of each component cannot be separately assigned.
(k)	
Type of test:	static []; semi-static []; flow-through [X]; open-system [X]; closed-
-)	system []
Species:	<i>Physa integra</i> (freshwater mollusc: pulmonate snail)
Endpoint:	Mortality [X] ; Reproduction rate []; Other [X] mobility and feeding response
Exposure period:	6 weeks
Results:	NOEC = 4.4 mg/L
	LOEC = >4.4 mg/L
Analytical monitoring:	Yes [] No [X] ? []
Method:	Two 6-week chronic studies were performed in which an amphipod, a pulmonate snail, and an operculate snail were tested together. A serial diluter was used to provide continuous flow conditions into duplicate 4- gallon glass aquaria for each of five concentrations plus controls. The

	frequency of snails throughout the tests.	crawling on the Mean measured	test chamber wal	ls was recorded ns were 0.2, 0.4,
	1.0, 1.9, and 4.4 mg/	L.		
GLP:	Yes [] No [] ? [X]			
Test substance:	commercial LAS formulation containing 14% LAS, 2.3% alcohol ethoxylate oxide condensate, 2.5% sodium soap, 48% sodium tripolyphosphate, 9.7% sodium silicate, 15.4% sodium sulphate, and 8.1% moisture and miscellaneous.			
Remarks:	No significant effect observed in P. integra	ts on survival, mo a at any LAS conce	bility, or feeding entration tested.	g responses was
Reference:	Arthur, J.W. 1970. detergent on <i>Gamma</i>	Chronic effects rus pseudolimnaeu	on linear alkylbe s, <i>Campeloma de</i>	enzene sulfonate <i>cisum</i> and <i>Physa</i>
Reliability:	4 Not assignable. Te materials, of which component cannot be	est substance is a fo only 14% is L separately assigne	ormulation contair AS. The contr d.	ning a mixture of ibution of each
(1)				
Type of test:	static []; semi-stati system []	ic []; flow-through	gh [X]; open-syst	tem [X]; closed-
Species:	Gammarus pseudolin	nnaeus (freshwater	amphipod)	
Endpoint:	Mortality [X] ; Reproresponses	oduction rate [];	Other [X] mobi	lity and feeding
Exposure period:	6 weeks			
Results:	For adult survival: NOEC = 0.2 mg/L , LOEC = 0.4 mg/L For reproduction: NOEC < 0.2 mg/L , LOEC = 0.2 mg/L			
Analytical monitoring:	Yes [X] No []? []			
Method:	Two 6-week chronic pulmonate snail, and diluter was used to p gallon glass aquaria snails were placed in Complete immobiliz Mean measured LAS Only adult amphipot termination of the <i>Gammarus</i> were con chamber for 15 week	e studies were per d an operculate sna provide continuous for each of five of n each of two repl ation was taken as concentrations we ds were started in second 6-week te unted and allowed ts of additional exp	formed in which ail were tested to flow conditions concentrations plu icate chambers p a sign of death fo ere 0.2, 0.4, 1.0, 1. each 6-week test est, however, the to remain in eac osure.	an amphipod, a gether. A serial into duplicate 4- is controls. Ten er concentration. r the amphipods. 9, and 4.4 mg/L. . Following the newly hatched h respective test
GLP: Test substance:	Yes [] No [A] ? []	formulation contai	mina 140/ IAS	2.20/ alashal
Test substance.	ethoxylate oxide o tripolyphosphate, 9.7 moisture and miscella	condensate, 2.5% % sodium silicate, aneous.	sodium soap, 15.4% sodium su	48% sodium lphate, and 8.1%
Remarks:	Adult survival was	affected at all co	oncentrations after	er 6-weeks in a
	somewhat dose-resp Based on adult surv	onsive manner, as	s shown in the 0.2 mg/L and t	following table.
	mg/L.		, v.2 mg i and t	ine LOLC 15 0.4
	Mean LAS	Duplicate		
	Concentration (mg/L)	Chambers	Trial 1	Trial 2
	4.4	A	0	0

	В	0	0
1.0	А	10	0
1.9	В	10	0
1.0	А	40	20
1.0	В	30	30
0.4	А	30	20
0.4	В	40	40
0.2	А	70	50
	В	40	50
Control	A	80	60
	В	70	40

Newly hatched amphipods were not produced in the highest concentration (4.4 mg/L). The results on survival of F_1 *Gammarus* from the second 6-week study, and the final numbers of gravid F_1 females and F_2 young produced after 15 weeks of exposure are shown below. Control F_1 females were the first to release F_2 young, and this occurred after 9 weeks. Females began liberation of F_2 young at 13 and 13.5 weeks for the 0.2 and 0.4 mg/L chambers, respectively. Based on variability and apparent reproductive effects at the lowest concetration, no NOEC value could be determined. The LOEC is 0.2 mg/L.

Moon LAS		E Initial	Final F ₁ numbers		F ₁ Females		ļ	Number
concentration (mg/L)	Duplicate Chambers	young numbers	Males	Females	% Survival	Final number gravid	Number of births	F ₂ produced
1.1	Α	0	0	0	0	0	0	0
4.4	В	0	0	0	0	0	0	0
1.0	Α	4	3	0	75	0	0	0
1.9	В	9	3	3	66	0	0	0
1.0	Α	32	3	4	22	1	0	0
1.0	В	37	10	16	70	3	0	0
0.4	Α	29	8	7	52	2	0	0
0.4	В	59	25	24	83	4	1	32
0.2	Α	52	11	9	38	8	2	45
	В	58	11	16	47	11	3	48
Construct	Α	77	26	22	62	5	6	109
Control	В	91	19	31	55	17	5	74

Reference:

Arthur, J.W. 1970. Chronic effects on linear alkylbenzene sulfonate detergent on *Gammarus pseudolimnaeus*, *Campeloma decisum* and *Physa integra*. Water Res. 4:251-257.

Reliability:

4 Not assignable. Test substance is a formulation containing a mixture of materials, of which only 14% is LAS. The contribution of each component cannot be separately assigned.

(m)Mysidopsis bahia (marine mysid)Species:Mysidopsis bahia (marine mysid)Results:NOEC = 0.12 mg/L (2 records)Test Substance:LAS normalized to C11.6NOEC is geometric mean of 2 recordsRemarks:NOEC is geometric mean of 2 records

Reference: Reliability:	 van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J., Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect concentrations and risk characterization of four surfactants: LAS, AE, AES, and soap, Environ. Toxicol. Chem. 18:2653-2663. 4 This study was given a reliability score of 4 because the original reports reviewed by the authors were not directly reviewed in the compilation of this robust summary.
(n)	
Type of test:	<pre>static []; semi-static []; flow-through [X]; other []; open-system [X]; closed-system []</pre>
Species:	Gammarus pulex (amphipod)
Endpoint:	Mortality [X]; Reproduction rate [X]; Other []
Exposure period:	Adults = 8 weeks; Juveniles = 15 weeks $LC_{adulta} = 56 \text{ deve} > 254 \text{ ms/L}$
Kesuits:	LC_{50} (adults, 50 days) > 354 μ g/L LC_(inversions: 107 days) > 275 μ g/L
	NOFC (number of offspring) = $97 \mu g/L$
Analytical monitoring.	$Y = \{\mathbf{X} \mid \mathbf{N} \in [1, 2] \}$
Method:	Two separate groups of field-collected adults in the pre-copulatory
	amplexus and early juveniles were exposed to five concentration of LAS
	(nominally 30, 60, 120, 240, 480 $\mu\text{g/L})$ and control under flow-through
	conditions. The exposure vessel consisted of a plastic trough that was 40
	cm by 10 cm. The water depth was approximately 3 cm with standpipe to
	drain and a 2 μ m stainless steel piece of mesh was placed approximately 5 cm from the and of the vessel to prevent the loss of <i>Cammanus</i> . The
	solution was made up of a 1:1 mixture of pond water and carbon-filtered
	tap water. Mean measured concentrations for adult exposure were $<1, 19$.
	35, 83, 176, 354 µg/L and for juvenile exposure were <1, 22, 36, 97, 141
	and 375 μ g/L. Survival and reproduction were recorded over an 8 week
	exposure for adults and a 15 weeks of exposure for juveniles. Offspring
	produced during the exposure were counted weekly but not removed from
CLD	the test areas.
GLP:	Yes [X] NO [] ? [] Commercial LAS C Sodium allul hanzona autonata (CAS# 85117
Test substance.	Commercial LAS, C_{10-14} Solution arry benzene sufficience (CAS# 65117- 50.6): Ally chain distribution: C_{12} 10.3% C_{12} 34.6% C_{12} 32.7% C_{13}
	21.6% C ₁₄ 0.9% Average chain length 11.7
Remarks:	This study is considered invalid due to high control mortality, which was
	23% and 37% for adult and juvenile exposures, respectively. Mortality of
	adults and juveniles exposed to test materials was in the same range,
	indicating that survival was not affected by exposure to LAS. Although
	the reproductive output at the highest two concentrations was lower than
	that in the lowest concentrations, it was not possible to conclude that this
	was due to LAS because the control reproduction was also lower. There
	was no significant difference in cumulative number of juvenile produced between the control and the highest concentration tested (254 ug/L) . For
	between the control and the highest concentration lester ($534 \mu g/L$). For the inversities, the time of formation of the control pairs was slower at the
	highest concentration tested 375 µg/L. By day 86 the number of
	offspring produced at 141 and 375 µg/L was significantly lower than
	produced at the other LAS concentrations and control. The NOEC
	remained at 97 μ g/L until the end of the study (day 107).
Reference:	ERASM. 2000. Long-term toxicity of LAS on Gammarus pulex.
	Internal Report AISE/CESIO, Brussels.

Reliability:	3 Not valid due to excessive control mortality.
(0)	
Type of test:	<pre>static []; semi-static []; flow-through [X]; open-system []; closed- system [X]; not stated []</pre>
Species:	Chironomus riparius (Insecta, Midge)
Endpoint:	Survival and emergence
Exposure period:	Approximately 24 day
Results:	NOEC = 2.4 mg/L in water w/o sediment
	LOEC = 3.72 mg/L in water w/o sediment
Analytical monitoring:	Yes [X] No []?[]
Method:	Tests were conducted as an aqueous fraction in the absence of sediment. A flow-through diluter system delivered test material in water to glass containers with 120-140 cm ² bottom surface area each. Intact egg masses were incubated in Petri dishes containing 20-30 mL of dilution water at 22 °C until hatching commenced. Newly hatched larvae were allowed to mature 72 hours before testing. Twenty larvae were randomly distributed to each duplicate test chamber for each of five test concentrations plus the controls. Larvae were fed daily until emergence of the first adult in each chamber. Tests were continued until each midge emerged as an adult or larvae were determined to be dead. The number of winged adults was recorded daily. The average test duration was 24 days. Total hardness, pH, dissolved oxygen, and temperature were monitored frequently during the test.
GLP:	Yes [] No [] ? [X]
Test substance:	$C_{11.8}$ LAS; 30.4% activity; mean molecular weight = 346
Remarks:	Adults typically emerged 12-14 days after hatching. Control values for adult emergence were similar to or exceeded the historical average observed in their laboratory (>90%). For comparison, additional flow-through studies were conducted with sediment from a naturally unspiked stream and using spiked sediments (see 4.5.2 (v)). The study with spiked sediments resulted in a NOEC of 319.0 ppm (LOEC = 993 ppm). This indicates that sorption onto sediment significantly mitigates LAS bioavailability. Thus, the water-only values above should be considered conservative. This is a critical study for this SIDS endpoint.
Reference:	Pittinger, C.A., Woltering, D.M., and Masters, J.A. 1989. Bioavailability of sediment-sorbed and aqueous surfactants to <i>Chironomus riparius</i> (midge). Environ. Toxicol. Chem. 8:1023-1033.
Reliability:	2 Valid with restrictions.

Water and Sediment Exposures

(p)	
Type of Test:	Semi-static
Species:	Anodonta cygnea (fresh water bivalve mollusc)
Endpoint:	Mortality [X]; Reproduction rate []; Other [] growth, reproduction
Exposure period:	80 days
Results:	NOEC \geq 200 mg/kg dw
Analytical monitoring:	Yes [X] No [] ? []
Method:	Sediments were collected from a pond and LAS was sorbed to sediment
	by repeated additions for 80 days. Glass tanks containing a 4 cm thick

	layer of spiked sediment and eight liters of dechlorinated tap water were used. A continuous water exchange allowed for a whole water mass change every 24 hours. Ten bivalves $(10^+/-1 \text{ cm or larger diameter})$ were introduced into each tank. The LAS sorbed to sediment was 750 mg/kg dw at the beginning of the experiment and 200 mg/kg dw at the end of the
	experiment.
GLP:	Yes [] No [] ? [X]
Test Substance:Comme	ercial LAS (unspecified)
Remarks:	All animals survived the 80 day exposures and were actively filter-feeding
_	without differences from the controls.
Reference:	Bressan, M., Brunetti, R., Casellato, S., Fava, G.C., Giro, P., Marin, M., Negrisolo, P., Tallandini, L., Thomann, S., Tosoni, L., Turchetto, M. and Campesan, G.C. 1989. Effects of linear alkylbenzene sulfonate (LAS) on benthic organisms. Tenside Surf. Det. 26:148–158
Reliability:	2 Valid with restrictions (no GLP, statistical methods not described)
(q)	
Type :	Artificial soil []; Filter paper []; Other [X] Natural sediment
Species:	Branchiura sowerbyi (tubificid worm)
Endpoint:	Mortality []; Weight []; Other [X] Reproductive Cycle
Exposure period:	220 days
Results:	NOEC \geq 7.18 mg/kg.
	Mean measured LAS concentrations in the sediment were 26, 9.8, and 7.18 mg/kg at 0, 45, and 220 days of exposure. No significant differences were observed between treated and control sediments for any parameter (survival, timing and percentage of cocoons, percent of hatching worms, number of eggs per cocoon, and mean embryonic development time). Total number of cocoons was slightly higher in treated worms than cocoons.
Method:	Twenty specimens in duplicate were used for both the control and treated sediments for testing the possible effects of a long exposure to LAS adsorbed on sediment to oligochaetes. Worms with a well known reproductive cycle were collected and maintained in the dark at 15°C in a glass container with natural sediment for at least two weeks before the experiment. The sediment for the experiments was gently washed with deionized water and dried at 70°C. It was organized by grain size, carbonate and organic carbon contents. It was then treated in order to obtain the irreversibly adsorbed concentration of LAS. The test substance and sediment mixture were equilibrated for 6 hours on a rotary shaker and then allowed to settle for 48 hours. Twenty eight washes were made with deionized water to ensure the sediment did not release any methylene blue material to the overlaying water. The residual concentration was checked after every wash in the overlaying water of desorbed LAS using the MBAS method. When an ~0 was observed, it was attained. This sediment was used in the experiment. The concentration of LAS in sediment was measured by HPLC at 0, 45, and 220 days. Endpoints measured included the number of cocoons, number of oocytes per cocoon, total number of oocytes, period of embryonic development, percent of degenerated cocoons, and percent of hatching worms.
GLP:	Yes [] No [] ? [X]

Test substance:	LAS solution (1000 mg/kg) mixed with 200 g dried sediment (from EniChem Augusta Industriale S.A.)
Remarks:	The LAS concentration in sediment used did not produce any effect on <i>B.</i> sowerbyi during the 220 days of exposure. The authors conclude that LAS absorbed on sediment has a much lower influence on the examined worms than LAS dissolved in water. The intitial concentration of LAS in treated sediments was 25.87 mg/kg (3.99 mg/kg in control). After 45 days, a reduction of 62-63% of the nominal concentration was measured. After 220 days the reduction reached 72%
Reference:	Casellato, S., Aiello, R., Negrisolo, P.A., and Seno, M. 1992. Long-term experiment on <i>Branchiura sowerbyi</i> Beddard (Oligochaeta, Tubificidae) using sediment treated with LAS (Linear Alkylbenzene Sulphonate). Hydrobiologia 232:169-173.
Reliability:	4 Not assignable. Documentation is incomplete, including identification of the structure, description of methods, lack of statistics, etc.
(r)	
Type :	Artificial soil []; Filter paper []; Other [X] Spiked Sediment
Species:	Lumbriculus variegatus (Oligochaete)
Endpoint:	Mortality []; Weight []; Other [X] Survival, Reproduction, and Growth
Exposure period:	28 days
Results:	LC_{50} (28 d) \geq 105 mg/kg soil dry weight (see table) NOEC = 81 mg/kg soil dry weight
Method:	A 28 day chronic study was conducted using sediment spiked with radio-labelled material. The test species, <i>Lumbriculus variegatus</i> , is a true sediment feeder (i.e., subsurface ingestion of sediment particles). The nominal concentrations were 50, 75, 100, 150, 300, 600 mg/kg/dry weight and controls. The test sediment contained 44% sand, 48% silt, and 8% clay. Twenty grams (wet weight) of the prepared sediment was added to clean 60 mL glass vessels followed by 30 mL of groundwater drawn from an aquifer. After 24 hours of equilibration, 10 mature <i>Lumbriculus</i> (ca. 15 mm in length, 8 mg dry weight) were added to each vessel. Vessels were aerated for 5 minutes every day and the overlying water replenished with distilled water every two days. Each test concentration was replicated 6 times. LAS concentrations were measured at 0 and 28 days. After 28 days the sediment was removed and all live worms counted, blotted dry, and wet weighed prior to air drying for 48 hours to a constant dry weight. Toxicity endpoints included survival, reproduction and biomass. The mode of reproduction as a single endpoint, i.e., number of organisms at test termination. Sediment concentrations were monitored using LSC and verified with HPLC.
GLP:	Yes [X] No [] ? []
Test substance:	LAS (Procter & Gamble), average alkyl chain length C_{114} . The radio-
	labelled LAS was 3-dodecylbenzene sulfonate (DOBS; 95% purity)
Results:	There was a loss of between 15 and 78% of the LAS radioactivity over the duration of the test, which was attributed to mineralization of LAS by the
	worms and microorganisms present in the sediment (biodegradation).
	Results are therefore based on the average of day 0 and day 28 measured sediment concentrations. All results are shown in the following table.

		Sediment Conce	ntration (mg/kg d	(w)
Survival Endpoint	NOEC	LOEC	EC ₂₀	EC ₅₀
Based on nominal values	100	150	90	136
Based on measured day 0 values	136	170	131	164
Based on mean of days 0 & 28 values	81	110	73	105
Biomass Endpoint				
Based on nominal values	100	150	108	144
Based on measured day 0 values	136	170	146	166
Based on mean of days 0 & 28 values	82	110	102	109

Remarks: LAS half-life in aerobic sediment was approximately 20 days. This is shorter than studies conducted in the same sediment without worms (half-life of 38 days), most likely due to increased bioturbation due to worm activity. No specific endpoint was particularly sensitive to LAS. Reference[.] Comber, S.D.W., Conrad, A.U., Hurst, K., Hoss, S., Webb, S., and Marshall, S. 2004. Chronic toxicity of sediment-associated linear alkylbenzene sulphonates (LAS) to freshwater benthic organisms. Manuscript in preparation. Reliability: 2 Valid with restrictions (s) Type : Artificial soil []; Filter paper []; Other [X] Spiked Sediment Species: *Caenorhabditis elegans* (Nematode) Endpoint: Mortality []; Weight []; Other [X] Survival, Fertility, Egg Production Exposure period: 3 days Results: LC_{50} (3 d) > 100 mg/kg soil dry weight NOEC = 100 mg/kg soil dry weight (egg production)Method: A 3 day chronic study was conducted using sediment spiked with coldmaterial LAS. Nominal concentrations were in the range of 10 to 1,000 mg/kg/dw. The test species is an infaunal bacterial feeder with a short life cycle, so 72 hours (3 days) is considered a chronic test. The nominal concentrations were 50, 75, 100, 150, 300, 600 mg/kg/dry weight and controls. The test sediment contained 44% sand, 48% silt, and 8% clay, with 2% organic matter. At the start of the test, ten juvenile worms of the first stage (270 \pm 16 μ m body length) were transferred to each test vial containing 0.75 g wet weight of spiked sediment mixed with 0.25 mL of a bacterial suspension. Five replicates were set up for each treatment, and the samples were incubated on a shaker at 20°C. After 72 hours the test was stopped by heat-killing the worms at approximately 50°C. The samples were mixed with an aqueous solution of rose Bengal to stain the worms for easier recovery. Sublethal toxicity endpoints were determined for growth based on the body length of the organisms, and fecundity by counting the number of eggs in the body of the test organism (egg production). The test was regarded as valid as the fertility of the test organisms in the control was $\geq 80\%$. GLP. Yes [] No [] ? [X]

Test substance:LAS (Procter and Gamble), average alkyl chain length $C_{11.4}$.Results:Results are shown in the following table.

	N	Nominal Sediment Concentration (mg/kg dw)				
Test Parameter	NOEC	LOEC	EC ₁₀	EC ₃₀		
Growth	200	300	275			
Fertility	200	300		258		
Egg Production	100	200		125		

Remarks:	For growth, with a low variability, an EC_{10} was chosen, whereas it was more appropriate to use an EC_{30} for the more variable parameters fertility and egg production. Egg production was the most sensitive endpoint. Toxicity values might be underestimated slightly, as threshold values were calculated using nominal concentrations (chemical analysis was only performed for selected test concentrations). The chemical analysis at the end of the test showed values 73 to 80% of the initial, nominal concentrations which equates to mean exposure concentrations of 87 to
	90% for the nematodes during the test.
Reference:	Comber, S.D.W., Conrad, A.U., Hurst, K., Hoss, S., Webb, S., and Marshall, S. 2004. Chronic toxicity of sediment-associated linear alkylbenzene sulphonates (LAS) to freshwater benthic organisms. Manuscript in preparation.
Reliability:	2 Valid with restrictions
(t)	

Type of test:Various types and durations of testsResults:The two articles compile the no observed effect concentration (NOEC)
values for many tests conducted on an assortment of marine species. The
following table shows the geometric mean NOEC values for each species
for marine invertebrates, as well as one fish and two algae species.

Genus (and species)	Geometric mean NOEC (mg/L)
Limanda (yokohamae)	0.05
Arbacia	0.45
Chaetopterus	0.45
Asterias	0.35
Mysidopsis (bahia)	0.12
Mysidopsis	0.20
Crassostrea (virginica)	0.025
Crassostrea	0.04
Mytilus (edulis)	0.025
Mytilus	0.04
Arcatia	0.30
Botrylloides	1.94
Molgula	0.90
Spisula	0.80
Botryllus	0.75
Laminaria	5.00
Dunaliella	0.11

Remarks:	All data were from tests conducted on commercial LAS with C_{10-13} alkyl chains and average carbon lengths of $C_{11.6}$ and $C_{11.8}$. The NOEC values have been normalized using OSARs to the average structure of $C_{11.6}$ LAS
Reference:	 Temara, A., Carr, G., Webb, S., Versteeg, D. and Feijtel, T. 2001. Marine risk assessment: Linear alkylbenzenesulphonates (LAS) in the North Sea. Marine Pollution Bulletin 42:635-642. van de Plassche, E.J., DeBruijn, J.H.M., Stephenson, R.R., Marshall, S.J., Feijtel, T.C.J., and Belanger, S.E. 1999. Predicted no-effect concentrations and risk characterization of four surfactants: Linear alkyl benzene sulfonate, alcohol ethoxylates, alcohol ethoxylated sulfates, and soap. Environ. Toxicol. Chem. 18: 2653-2663.
Reliability:	4 Not assignable. This study was given a reliability score of 4 because the original reports reviewed by the authors were not directly reviewed in the compilation of this robust summary.
(u)	
Туре:	<pre>static []; semi-static [X]; flow-through []; other []; open-system []; closed-system []</pre>
Species:	<i>Mytilus galloprovincialis</i> (marine mussel)
Endpoints:	Other. filtration rate, oxygen uptake, nitrogen excretion
Exposure period:	7 days
Results:	NOEC = 32.19 mg/kg dry weight (geometric mean of initial [132 mg/L]
	and final [7.85 mg/L] LAS concentration)
Analytical Monitoring:	Yes
Method.	cultivation area of the Lagoon of Venice, Italy were divided into groups of 10 and placed in net tubes in a 60-L tank for 7 days in contact with 50 mg/L continuously suspended LAS-spiked sediments. Mussels were fed an algal suspension and water, food, and sediment were renewed daily. Filtration rate was determined twice a day (immediately before and after water changes) as defined by the volume of water cleared of algal particles/animal/hour. Faeces were collected daily and pooled for analysis of LAS concentrations by HPLC. Oxygen consumption and ammonia excretion rates were determined at the end of each treatment.
GLP:	Yes [] No [X] ? []
Test substance: Remarks:	Commercial LAS; likely average alkyl chain length = $C_{11.6}$ No significant differences in survival or physiological responses between treatments and controls were observed. The LAS concentration in treated sediments decreased by about 90% over the duration of the study (mean 132 mg/kg at initiation to mean 7.85 mg/kg at completion).
Reference:	Marin, M.G., Pivotti, L., Campesan, G., Turchetto, M. and Tallandini, L. 1994. Effects and fate of sediment-sorbed linear alkylbenzene sulphonate (LAS) on the bivalve mollusk <i>Mytilus galloprovincialis</i> Lmk. Wat. Res. 28:85-90.
Reliability:	2 Valid with restrictions
(v)	
Type of test:	static []; semi-static []; flow-through [X]; open-system []; closed-
а. :	system [X]; not stated []
Species:	Chironomus riparius (Insecta, Midge)
Endpoint:	Emergence
Exposure period:	Approximately 24 day

GLP:

NOEC = 319 ppm in sediment LOEC = 993 ppm in sediment

Analytical monitoring: Yes [X] No []?[] Method: Tests were conducte

Tests were conducted as an aqueous fraction in the presence of sediment. Natural stream sediments (71% clay, 19% fine silt, 4% medium sand, 6% fine sand) were collected from a pristine site in Rapid Creek, SD. Before testing, wet sediment was autoclaved for 40-60 minutes to reduce microbial populations and minimize initial rates of surfactant biodegradation. LAS was added to a sediment slurry at a nominal concentration and stirred overnight, then 350 g was poured into each test chamber and allowed to settle. The organic carbon content of the test sediment was 4.2% prior to testing. A flow-through diluter system delivered test material in water to glass containers with 120-140 cm² bottom surface area each. Test concentrations were control, 8, 42, 146, 319, and 993 ppm. Intact egg masses were incubated in Petri dishes containing 20-30 mL of dilution water at 22 °C until hatching commenced. Newly hatched larvae were allowed to mature 72 hours before testing. Twenty larvae were randomly distributed to each duplicate test chamber for each of five test concentrations plus the controls. Larvae were fed daily until emergence of the first adult in each chamber. Tests were continued until each midge emerged as an adult or larvae were determined to be dead. The number of winged adults was recorded daily. The average test duration was 24 days. Total hardness, pH, dissolved oxygen, and temperature were monitored frequently during the test. Yes [] No [] ? [X] $C_{11.8}$ LAS; 30.4% activity; mean molecular weight = 346

Test substance:C11.8 LAS; 30.4% activity; mean molecular weight = 346Remarks:Adults typically emerged 12-14 days after hatching. Control values for
adult emergence were similar to or exceeded the historical average
observed in their laboratory (>90%). Percent emergence was 98, 95, 90,
90, 90, and 73 for the control, 8, 42, 146, 319, and 993 ppm
concentrations, respectively. For comparison, additional flow-through
studies were conducted without sediment (see 4.5.2 (o)). Results indicate
that sorption onto sediment significantly mitigates LAS bioavailability.Reference:Pittinger, C.A., Woltering, D.M., and Masters, J.A. 1989. Bioavailability
of sediment-sorbed and aqueous surfactants to Chironomus riparius
(midge). Environ. Toxicol. Chem. 8:1023-1033.Paliability2 Welid with restrictiones

Reliability: 2 Valid with restrictions.

4.6 TOXICITY TO TERRESTRIAL ORGANISMS

4.6.1 TOXICITY TO SOIL DWELLING ORGANISMS

(a)
 Species/Endpoints: See table
 Results: The following table shows the available NOEC, EC₁₀ and EC₅₀ values for eleven soil dwelling invertebrate species (in mg/kg dry weight).

Species	Endpoint	NOEC	EC ₁₀	EC ₅₀
Eisenia foetida	Reproduction		383	558
Lumbricus terrestris	Weight	667		
Aporrectodea caliginosa	Reproduction		14	129

	Species	Endpoint	NOEC	EC ₁₀	EC ₅₀	
	Aporrectodea longa	Reproduction		27	137	
	Folsomia fimetaria	Reproduction		96	442	
	Folsomia candida	Reproduction		18	91	
	Hypoaspis aculeifer	Reproduction		81.7	236	
	Enchytraeus albidus	Reproduction		6.2	40.5	
	Platynothrus peltifer	Reproduction	320		467	
	Isotoma viridis	Growth		41		
	Hypogastrura assimilis	Reproduction		99.8	421	
Remarks: Reference: Reliability:	 LAS (unspecified) Values were extracted from a variety of original references and compiled for this article. Jensen, J., Lokke, H., Holmstrup, M., Krogh, P.H. and Elsgaard, L. 2001. Effects and risk assessment of linear alkylbenzene sulfonates in agriculture soil. 5. Probabilistic risk assessment of linear alkylbenzene sulfonates in sludge-amended soils. Environ. Toxicol. Chem. 20:1690-1697. 4 This study was given a reliability score of 4 because the original reports reviewed by the authors were not directly reviewed in the compilation of this robust summary. 					
(b) Type : Species: Endpoint: Exposure period: Results:	Artificial soil []; Filter paper [<i>Enchytraeus albidus, Aporre</i> <i>Folsomia fimetaria, Hypogastru</i> Mortality [X] ; Weight [X] ; Oth 21 days (28 days for <i>A. caligina</i> The following table shows the LAS concentrations in mg/kg d]; Other [X] San ctodea caliginoso ara assimilis, and er [X] Reproduct osa and A. longa g results of all tests lry weight.	dy, agricu a, Aporr Hypoaspi tion growth test s. All valu	iltural s ectodea s aculeif ts) ues are r	oil longa, èr nominal	

Species	Parameter	NOEC	LOEC	LC ₁₀ or EC 10	LC ₅₀ or EC ₅₀	Reliability Rating	Rationale for Reliability Rating
Enchytraeus albidus	Survival, adults Reproduction	198 20	397 40	194 6	430 41	1 1	Draft ISO/WD 16387 protocol
Aporrectodea caliginosa	Survival, adults Cocoon production Survival, juveniles Growth, juveniles	278 >793 >397 278	793 >793 >397 397	329 14 >397 105	535 129 >397 354	2 3 2 2	Comparable to ISO 11268-2 Deviations; limited cocoons Comparable to ISO 11268-2, but with only weight measurement
Aporrectodea longa	Survival, adults Cocoon production Survival, juveniles Growth, juveniles	278 >793 397 79	793 >793 793 278	329 27 296 84	535 137 517 349	2 3 2 2	Comparable to ISO 11268-2 Deviations; limited cocoons Comparable to ISO 11268-2, but with only weight measurement
Folsomia fimetaria	Survival, adults Reproduction	>793 278	>793 278	>793 85	>793 424	1 1	Comparable to ISO 11267
Hypogastrura assimilis	Reproduction	79	278	99	421	1	Comparable to ISO 11267
Hypoaspis aculeifer	Survival, adults Reproduction	>793 278	>793 793	>793 82	>793 236	2 2	No guideline available

Method:

The effect of LAS on six species of soil invertebrates was determined using the following methods.

Earthworm tests:

No internationally accepted guideline is available for *A. caliginosa* and *A. longa*. For the reproduction tests, 1 kg dry weight of soil was carefully mixed with 160 mL of LAS solution using an electric mixer and filled into plastic pots. The six treatments consisted of one control and five concentrations of LAS and these treatments were randomly assigned to the experimental units. After 24-hour equilibration of the test soil, 3 (rather than 10) earthworms were added to closed containers with perforated lids for ventilation. Approximately 5 g per worm were added after the test animals had been introduced. The containers were then incubated for 21 days in darkness and the contents were later wet sieved through a 1-mm mesh. Water content was adjusted after 14 days.

For the growth test with juvenile *A. caliginosa* (2-3 weeks old), 60 g dry weight of soil were mixed with 9.6 mL of LAS solution with a spatula and filled into 160-mL polyethylene beakers with perforated lids for ventilation. The six treatments consisted of one control and five concentrations of LAS and these treatments were randomly assigned to the experimental units. After 24-hour equilibration of the test soil, one earthworm was added to each container. The beakers were incubated for 28 days in darkness and then the earthworms were recovered and their guts were cleared. The surviving animals were dried for 24 hours and their dry weight was recorded to the nearest 0.1 mg. The examination of the effects on growth of *A. longa* used the same method except the test period was 42 days.

Enchytraeid test:

The enchytraeid reproduction test followed a previously described protocol (draft ISO/WD 16387) using the potworm (Enchytraeus albidus). Forty grams dry weight of soil were mixed with 6.4 mL of LAS solution and filled into 160-mL beakers with perforated lids for ventilation. After 24-hour equilibration of the test soil, 10 adult E. albidus were added to each container and incubated in darkness for 21 days. After incubation, the surviving adult animals were removed from the soil. Now only containing cocoons, the soil was incubated in the beakers for another 21 days to allow development and hatching of the juveniles. After this period, the soil containing juveniles was stained with Bengal red, and water was added to facilitate counting of the juveniles. The test concentrations were not provided but can be estimated from Figure 5 to be 0, 20, 40, 80, 200 and 400 mg/kg with the numbers of adults surviving per replicate to be approximately 10, 10, 10, 10, 9, and 6, and the numbers of juveniles per replicate (reproduction) to be approximately 77, 50, 37, 21, 0, and 0, respectively.

Springtail tests:

No internationally accepted guideline is available for springtail reproduction. Effects of reproduction of *F. fimetaria* were determined using a method described by Wiles and Krogh. Twenty-seven grams dry weight of soil were mixed with 3 mL of LAS solution and filled into cylindrical test containers with lids. The bottom of the cylinder consisting of a 1-mm mesh to allow later extraction of the test animals. The mesh was covered with a layer of plastic film to prevent escape of the test animals. Adult, rather than juvenile, springtails were used. Ten male and

	ten female <i>F. fimetaria</i> (23-26 days old) were added to the test containers after 24-hour equilibration of the test soil. The containers were incubated for 21 days with 12:12 photoperiod (h). after incubation, the animals were extracted using MacFadyen high-gradient extraction and the number of offspring counted. The same procedure was used for the springtail species <i>H. assimilis</i> Krausbauer, using ten male and ten female adults (16-19 days old). The test concentrations were not listed but can be estimated from Figure 6 to be 0, 10, 25, 75, 275, and 800, with the numbers of adult surviving per replicate to be approximately 145, 155, 115, 110, 165, and 165 and the numbers of juveniles per replicate (reproduction) to be approximately 285, 275, 190, 145, 205, and 10. Predacious mite test:
	No internationally accepted guideline is available for mite reproduction. Effects on reproduction on the predacious mite (<i>H. aculeifer</i>) were examined according to a method described by Krogh and Axelsen. A total of 54 g dry weight of soil was mixed with 6 mL of LAS solution and filled into test containers (as described for springtails). Ten female and five male <i>H. aculeifer</i> (16-19 days old) were added to each test container together with 100 <i>F. fimetaria</i> (16-19 days old) serving as prey for the mites. Incubation and extraction of mite offspring followed the same procedure as described for springtails.
	A natural sandy, agricultural soil was used for all tests, rather than synthetic test soil. Nominal concentrations of LAS for some tests were
CL D	verified by chemical analysis using HPLC.
GLP: Test substance:	Yes No ? [X] Cross I AS was obtained as an aqueous sodium salt solution with an active
Test substance.	matter concentration of 16.1% (w/w), average molecular weight = 342 g/mol, distribution of the linear alkyl chains: C_{10} 14%, C_{11} 34%, C_{12} 31%, and C_{13} 21%; average alkyl chain length = $C_{11.6}$
Remarks:	Toxic effects on reproduction and growth were revealed when the concentration in soil exceeded 40 to 60 mg/kg dry weight. Reproduction was approximately fourfold more sensitive in earthworms and enchytraeids than in springtails and mites. It is argued that this difference in sensitivity is related to the dependency of soil pore water, which is high in the annelids but comparatively low in the arthropods. It should be noted that these studies report worst case exposures due to the use of a sandy test soil and the fact that LAS was added as an aqueous solution to the soil. In addition, too few replicates were used for the ECx approach (e.g., <5 controls) and several key deviations from draft protocols limited the reliability of endpoints for some studies (e.g., <i>A. caliginosa</i> and <i>A. longa</i> cocoon production). Nominal concentrations were derived from
Reference:	tables and figures since actual values were not found in the text. Holmstrup, M. and Krogh, P.H. 2001. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 3. Sublethal effects on soil invertebrates. Environmental Toxicology and Chemistry 20:1673- 1679.
Reliability:	See table for reliability of individual endpoints by species.
(c)	
Type : Species: Endpoint:	Artificial soil [X] ; Filter paper []; Other [] <i>Eisenia foetida</i> (Worm (Annelida), soil dwelling). Mortality [X] ; Weight [X] ; Other []

Exposure period:	14 day
Results:	$LC_{50} > 1000 \text{ mg/kg}$
	NOEC = 250 mg/kg soil dw
Method:	OECD Guideline 207, 1984. Ten adult worms (mean wt. 0.66 g/animal)
	were placed into each of four glass jars per concentration with soil
	comprised of 70% 5010 grade silica sand, 20% kaolinite clay, and 10%
	finely ground sphagnum peat. Nominal test concentrations in the soil
	were 1000, 500, 250, 125, 63 and 0 mg/kg dry weight. Temperature was
	maintained at $20^{+}/-2^{\circ}$ C with 24-hour continuous lighting at 600 lux.
	Earthworms were assessed for mortality, general health, body weight, and
	behavior after 7 and 14 days.
GLP:	Yes [] No [] ? [X]
Test substance:	LAS (commercial blend) with average alkyl chain length C _{11.6} (typical of
	LAS chain lengths found in the environment).
Remarks:	No significant mortality was observed at the highest nominal
	concentration of 1000 mg/kg. A 33% and 23% reduction in body weight
	was observed at 100 and 500 mg/kg vs. a 14% reduction for the controls.
	Based on statistical analysis of the weight data, the no effect concentration
	was the nominal 250 mg/kg dose, which was confirmed by HPLC to be
	235 mg/kg.
Reference:	Mieure, J.P., Waters, J., Holt, M. and Matthijs, E. 1990. Terrestrial safety
~	assessment of LAS. Chemosphere 21:251-262.
Reliability:	2 Valid with restrictions
(d) T	
Type :	Artificial soil [X]; Filter paper []; Other []
Species:	Lumbricus terrestris (soil dwelling worm)
Endpoint:	Mortality [X]; weight [X]; Other []
Exposure period:	14 day
Results.	$LC_{50} > 1555 \text{ mg/kg soil dw}$
Mathad:	NOEC - 007 Illg/kg soll uw US EDA Environmental Assessment Technical Guide No. 412, 1087
Methou.	Ten adult earthworms (mean wt 3.2 g/animal) were placed in each of four
	replicate one gallon glass jars for each test concentration. Nominal test
	concentrations in the soil were 1333 667 333 167 84 and 0 mg/kg dry
	weight Soil was comprised of 70% silica sand 20% kaolinite clay and
	10% snhagnum neat Rabbit faces was added as food at 50 g/kg
	Temperature was maintained at $13^{+}/2^{\circ}$ C with 24 hour continuous lighting
	at 700-750 lux Worms were assessed for mortality general health body
	weight and behavior after 7 and 14 days
GLP	Yes $\begin{bmatrix} 1 & No \end{bmatrix} $ 2 $\begin{bmatrix} \mathbf{X} \end{bmatrix}$
Test substance	LAS (commercial blend) with average alkyl chain length C_{114} (typical of
i est substance.	LAS chain lengths found in the environment)
Remarks [.]	No statistically significant mortality was observed at the highest nominal
	concentration of 1333 mg/kg. Based on weight and burrowing behavior.
	the no effect concentration was the nominal 667 mg/kg dose, which was
	confirmed by HPLC to be 613 mg/kg. It should be noted that the
	continuous lighting prevented normal feeding, which normally occurs at
	night on the surface, and thus the test conditions and results should be
	considered highly conservative.
Reference:	Mieure, J.P., Waters, J., Holt, M., and Matthijs, E. 1990. Terrestrial
	safety assessment of LAS. Chemosphere 21:251-262.

Reliability:

2 Valid with restrictions

Artificial soil []; Filter paper []; Other [X] Natural soil			
Folsomia fimetaria (Collembola; springtails)			
Mortality [X]; Weight [X]; Other [X] molting rate, reproduction			
21 days			
Results are shown in the following table. All results are in mg/kg dry weight of soil.			

Endpoint	NOEC	LOEC	LC ₁₀ or EC ₁₀	LC ₅₀ or EC ₅₀
Adult survival	>1000	>1000	>1000	>1000
Juvenile survival	500	700	196	570
Reproductive output	500	1000	147	737
Juvenile growth	<200	200	163	896
Molting frequency	<300	300	185	923

Method:	No internationally accepted guideline was available. Adult and juvenile collembola were exposed to LAS mixed with 30 g of a natural, commonly available moist soil. Concentration levels for survival and reproduction of adults were control, 100, 150, 300, 500, 700 and 1000 mg/kg dry weight. Concentrations for survival and growth of juveniles were control, 200, 3000, 500, 700, and 1000 mg/kg dry weight. Concentrations for molting of juveniles were control, 300 and 600 mg/kg dry weight. In all cases, four replicates per concentration were used. For measurement of molting frequency, juveniles were held singly on a compressed surface of soil in multidishes with 24 circular holes. The multidishes were assessed every second day and exuviae were recorded and removed for a period of 20 days. Deviations from the subsequently developed ISO 11267 protocol included use of adults, use of 20 individuals instead of 10 per test chamber, and an exposure of 21 days instead of 28 days.
GLP [.]	Yes $\begin{bmatrix} 1 \\ No \end{bmatrix} X \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
Test substance:	Marlon A350 (CAS #68411-30-3) C_{10-13} LAS; 50% active substance; mean chain length of $C_{11,53}$; mean molecular weight 344
Remarks:	The most sensitive endpoint was reproduction ($EC_{10} = 147 \text{ mg/kg dry}$ weight). Nominal concentrations are derived from tables and figures since values were not listed directly in the text. While there were some deviations from the subsequently developed ISO 11267 protocol, the procedures are considered reliable.
Reference:	Holmstrup, M. and Krogh, P.H. 1996. Effects of an anionic surfactant, linear alkylbenzene sulfonate, on survival, reproduction and growth of the soil-living collembolan, <i>Folsomia fimetaria</i> . Environ. Toxicol. Chem. 15:1745-1748.
Reliability:	2 Valid with restrictions. Well documented publication, no GLP, EC_x calculation not fully detailed.
(f)	
Type :	Artificial soil []; Filter paper []; Other [X] Natural soil
Species:	Folsomia candida (Collembola; springtails) and Enchytraeus albidus (potworm)
11 2005	120

August 11, 2005

Endpoint: Exposure period: Results:

Method:

Mortality **[X]**; Weight **[]**; Other **[X] reproduction** 4 to 6 weeks The resulting EC₅₀ values were very similar for the two species, as shown in the following table. All values are mg/kg dry weight.

Species	Endpoint	NOEC	LOEC	LC ₁₀ or EC ₁₀	LC ₅₀ or EC ₅₀
F. candida	Adult survival	1000	2500	750	1338
	Reproduction	500	1000	480	1437
E. albidus	Adult survival	<750	750	511	1400
	Reproduction	750	1500	447	1143

The EC_{50} values for nitrification and CH_4 production were 431 and 277 mg/kg, respectively, for LAS. Aerobic respiration and dentrification were not inhibited at the test concentrations.

LAS may enter the soil environment during sludge application. The toxic effects of LAS and nonylphenol (NP) to two soil invertebrates (*Folsomia candida* and *Enchytraeus albidus*) and five microbial processes (aerobic respiration, nitrification, dentrification, anaerobic CH₄ production, and anaerobic CO₂ production) were assessed in sludge-soil mixtures.

A coarse sandy soil collected from the upper 20 cm of an agricultural field in Jyndevad, Denmark was used for the laboratory experiments and mineralization controls. The Jyndevad soil consisted of 76.8% coarse sand, 12.2% fine sand, 4.1% silt, 3.9% clay, 3.0% organic matter and a pH of 6.0. A similar soil was collected in Lundgaard for use in the microbiological tests was 63.1% coarse sand, 26.6% fine sand, 3.8 silt, 4.3% clay, 2.2% organic matter and pH of 6.1. Dewatered activated sludge collected from a WWTP in Lundtofte was used in all experiments. LAS was applied to the sludge in a demineralized water solution and allowed to sorb for 24 hours at 4°C in at N₂ atmosphere before mixing the sludge with soil. The soil insects were exposed to a sludge:soil ratio of 1:20 on a dry weight basis. In the microbiological tests, 0.5 mL aliquot solutions of LAS in methanol were added to 1 g of sand, the methanol allowed to evaporate, and sorbed for 24 hours at 4°C under an N₂ atmosphere to minimize biodegradation during the sorption period. The sand was then mixed with sludge (0.3 g dry weight) and finally soil was mixed in with the sludge and sand. A sludge:soil ratio of 1:100 (dry weight basis) was used to avoid depletion of oxygen.

Folsomia candida

The springtail reproduction test was initiated with 10- to 12-day old juveniles and lasted 4 weeks. The resulting nominal LAS concentrations were 125, 250, 500, 1000, 2500, and 4000 mg/kg sludge-soil mixture. Ten juvenile *F. candida* were added to each of the 4 replicate vials per concentration containing 30 g (wet weight) of the sludge-soil mixture. The numbers of surviving adults and offspring were counted after 4 weeks.

Enchytraeus albidus

The enchytraeid worm reproduction test was initiated by introducing 10 worms with visible clitellum to each of 4 replicate vials per concentration. Nominal LAS concentrations were 750, 1500, 2250, and 3000 mg/kg

	sludge-soil mixture (dry weight). Test duration was six weeks. After 3 weeks, the adult worms were removed and counted. At 6 weeks, the number of offspring hatched from cocoons were counted.
	Microbiological tests
	The toxicity of LAS to microbiological processes was evaluated using one aerobic system (simultaneous determination of aerobic respiration and nitrification) and two anaerobic systems (denitrification and methanogenesis). Nominal LAS concentrations were 0, 125, 250, 500, 1000, and 2500 mg/kg mixture (dry weight) for both the aerobic and
	methanogenic systems, and 0, 250, 500, 1500, 300, and 5000 mg/kg (dry
CLD	weight) in the dentifying system.
GLP:	
Test Substance: The te	st substance for soil invertebrates consisted of an aqueous sodium salt solution containing 14% (w/w) of ¹⁴ C-labeled C_{10-13} LAS (EniChem Augusta Industriale; purity 95%). The average alkyl chain length of C_{10-13} LAS was 11.6 and the distribution was C_{10} 14%, C_{11} 34%, C_{12} 32% and C_{13} 20%. A pure C_{12} LAS, 4-(2-dodecyl)benzene sulfonate sodium salt, was used in the microbiological tests.
Remarks:	Reproduction of <i>E. albidus</i> was the most sensitive endpoint ($EC_{10} = 447$ mg/kg dry weight). Danish laws stipulate a maximum cut-off value of 1300 mg/kg for LAS in sludge for agricultural use.
Reference:	Gejlsbjerg, B., Klinge, C., Samsoe-Petersen, L., and Madsen, T. 2001. Toxicity of linear alkylbenzene sulfonates and nonylphenol in sludge- amended soil. Environmental Toxicology and Chemistry 20:2709-2716.
Reliability:	2 Valid with restrictions. Well documented publication, comparable to ISO.

4.6.2 TOXICITY TO TERRESTRIAL PLANTS

(a)

Species/Endpoints: See table Results: See table The following table shows the available NOEC, EC₁₀ and EC₅₀ values for twelve terrestrial plant species (in mg/kg dry weight).

Species	Endpoint	EC ₁₀	EC ₅₀
Brassica rapa	Growth		134
Brassica rapa	Growth	90	200
Malvia pusila	Growth		204
Solanum nigrum	Growth		169
Chenopodium album	Growth		164
Amaranthus retroflexus	Growth		142
Nigella arvensis	Growth		132
Galinsoga parviflora	Growth		90
Sorghum bicolor	Growth		137
Helianthus annuus	Growth		289
Phaseolus aureus	Growth		316
Avena sativa	Growth	50	300
Sinapis alba	Growth	200	300

Remarks: Reference:	Values are extracted from a variety of original references and compiled for this article. NOEC values were extrapolated by applying an assessment factor of 10 to the EC ₅₀ . This is considered an unreliable assumption as measured acute-to-chronic ratios for LAS in plants vary between 2 and 6. Jensen, J., Lokke, H., Holmstrup, M., Krogh, P.H. and Elsgaard, L. 2001. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 5. Probabilistic risk assessment of linear alkylbenzene sulfonates in sludge-amended soils. Environmental Toxicology and Chemistry 20:1690-1697.
Reliability:	4 This study was given a reliability score of 4 because the original reports reviewed by the authors were not directly reviewed in the compilation of this robust summary.
(b)	
Species:	Grass, beans, radishes, potatoes
Radiolabel:	Yes
Results:	No adverse effects on plant biomass were observed at the concentrations tested [initial concentrations in soil = 27.2 mg/kg (grass, beans, radishes); = 16.2 mg/kg (potatoes)]
Temperature:	Room temperature
Method:	Soil cores taken from two ecosystems were collected and placed in a climate controlled "plant metabolism box". Ecosystem Section I consisted of a heavy, clay-like soil. Radiolabeled LAS (a defined mixture) absorbed to digested sludge was incorporated into the soils, after which the soils were planted with either grass, bush beans and radishes (Section I) or potatoes (Section II). The test systems were maintained under a defined standard climate (i.e., an average day in June in Northern Germany) for the vegetative period (76 and 106 days, respectively for Sections I and II). At the end of the growing season samples were collected from plants and soil and subjected to radioanalysis.
GLP:	Yes [] No [] ? [X]
Test Substance:	LAS. The authors state that they tested a defined mixture of LAS, but do not report the composition in this paper
Reference:	Figge, K. and Schoberl, P. 1989. LAS and the application of sewage sludge in agriculture. Tenside Surf. Det. 26:122-128.
Reliability:	2 Valid with restrictions
(a)	
(C) Species:	radish tomato oats
Endpoint [.]	Emergence []: Growth [X]: Other []
Exposure period:	14 day
Results:	$EC_{50} > 77.1 \text{ mg/kg soil dw}$ NOEC = 25.7 mg/kg soil dw
Method:	OECD Guide-line 208 "Terrestrial Plants, Growth Test".
GLP:	Yes [] No [] ? [X]
Test substance: Remarks:	Commercial LAS with an average carbon chain length of C _{11.8} . Information as cited in IUCLID Data Sheet for CAS #68411-30-3. The substance was tested in the range of 2.57 to 257 mg MBAS/kg Nominal concentrations, synthetic soil, static, pH 5.0-7.5, temperature 20- 25 °C. Results are expressed as mg MBAS per kg soil. First Observed Effect Concentration (FOEC) is 77.1 mg MBAS/kg, EC50 is about 77.1 but below 257 mg MBAS/kg.
	but below 257 mg MBAS/kg.

Reference:	European Commission. 2000b. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished data (Registry No. 5929).
Reliability:	4 Not assignable
(d)	
Species:	Brassica rapa (Dicotyledon)
Endpoint:	Emergence []; Growth []; Other [X] emergence of seedlings
Exposure period:	21 day
Results:	NOEC = 50 mg/kg soil dw FOEC = $150 \text{ mg/kg soil dw}$
Method:	EEC Directive 79/831, Annex V; EEC Ring Test C (L1) 3: Higher Plant, 1986.
GLP:	Yes [] No [X] ? []
Test substance:	Marlon A 350 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = 11.6
Remarks:	Data refer to 100% active ingredient
Reference:	European Commission. 2000b. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929).
Reliability:	4 Not assignable
(e)	
Species:	Lycopersicum esculentum (tomato)
Endpoint:	Emergence []; Growth []; Other [X] emergence of seedlings
Exposure period:	21 day
Results:	NOEC = 50 mg/kg soil dw FOEC = $150 \text{ mg/kg soil dw}$
Method:	EEC Directive 79/831, Annex V; EEC Ring Test C (L1) 3: Higher Plant, 1986.
GLP:	Yes [] No [X] ? []
Test substance:	Marlon A350 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = 11.6
Remarks:	Data refer to 100% active ingredient
Reference:	European Commission. 2000b. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929).
Reliability:	4 Not assignable
(f)	
Species:	Avena sativa (Monocotyledon)
Endpoint:	Emergence []; Growth []; Other [X] emergence of seedlings
Exposure period:	21 day
Results:	NOEC = 50 mg/kg soil dw FOEC = $150 \text{ mg/kg soil dw}$
Method:	EEC Directive 79/831, Annex V; EEC Ring Test C (L1) 3: Higher Plant, 1986.
GLP:	Yes [] No [X] ? []
Test substance:	Marlon A 350 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = 11.6
Remarks:	Data refer to 100% active ingredient

Reference:	European Commission. 2000b. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929).
Reliability:	4 Not assignable
(g) Species:	Sorghum bicolour (crop sorghum), Helianthus annuus (sunflower), Phaseolus aureus (mung bean)
Endpoint:	Emergence []; Growth [X]; Other []
Exposure period: Results:	Emergence: 7 days; Growth: 21 days NOEC = $100 \text{ mg/kg soil dw}$ (all three species)
ixesuits.	$EC_{50} = 167, 289, and 316 mg/kg dw (for listed above listed species, respectively)$
Method:	A laboratory standard operating procedure based on OECD Guideline 208 (OECD 1984) was used. The test was conducted in an artificial soil consisting of commercially available potting compost (WC-B) and washed, sieved (1 mm mesh), dried (temperature and time not reported) silver sand (1:9 potting soil:washed sand). Concentrations tested were control, 1, 10, 100 and 1000 mg/kg dw. Deviations from the guideline included: % particles less than 20 μ g not given; 4.1% instead of maximum 3% organic carbon in the test soil; sand was sieved with 1 mm mesh instead of 0.5 mm mesh; weight and variability of seeds not reported. The EC ₅₀ values were calculated with probit analysis according to Finney (1971).
GLP:	Yes [X] No [] ? []
Remarks:	The NOEC is for the most sensitive endpoint, which was growth (shoot fresh weight). Nominal concentrations not measured.
Reference:	Windeat, A.J. 1987. Effects on the growth of <i>Sorghum bicolour</i> , <i>Helianthus annuus, Phaseolus aureus</i> . Unilever study report BL/B/3078 (R118). Unilever Research Port Sunlight Laboratory. Sunlight, UK.
Reliability:	2 Valid with restrictions.
(h) Species:	Anguaguig hatayophulla
Endpoint:	Foliar penetration of NaCl
Exposure period: Methods:	4 weeks The influence of surfactants on foliar NaCl uptake was examined in Norfolk Island Pines (<i>Araucaria heterophylla</i>). Plants were exposed to seawater with different concentrations of LAS by spraying with a handheld sprayer three times a week for four weeks. Plants were sprayed until the foliage was wetted sufficiently for the spray to run off.
Results:	At 10 mg/L of LAS, which corresponds with a reduced surface tension of 32 mN/m , the Na ⁺ content in the foliage increased almost tenfold to a level of approximately 500 µmol/g dw and damage symptoms were recorded
Remarks:	The potential for LAS and other surfactants to influence defoliation in coastal trees was reviewed in a literature review sponsored by ERASM in 2002. In laboratory studies in which young trees are exposed to artificial sea spray, it has been demonstrated that the presence of surfactants at a concentration that causes a dynamic surface tension < 30 mN/m lead to an increased foliar penetration of NaCl via the stomata. It was found that a low surface tension increases the contact angle with the leave and makes it

possible for an aqueous solution to enter the stomata. This is a
hypothesized mechanism of defoliation.
1) Grieve, A.M. and Pitman, M.G. 1978. Salinity damage to Norfolk
Island pines caused by surfactants. III. Evidence for stomatal penetration
as the pathway of salt entry to leaves. Aust. J. Plant. Physiol. 5:397-413.
2) Hamwijk, C. 2002. Literature study: Exposure and possible indirect
effects of aerosol borne surfactants on coastal vegetation. TNO Chemistry
report, Study number 02-4077/01. Prepared for CEFIC ERASM.
4 Not assignable. Original studies were not directly reviewed.

(i)

Species:

Endpoint: Exposure period:

Method:

Pinus halepensis (pine tree)

Accumulation of LAS in plant tissues

2 minutes

The concentration of LAS tested was 1.7 x 10⁻⁴ mol/kg, which is equivalent to 58 mg/L based on a $C_{11.6}$ LAS with a molecular weight of 342. Three batches of ten 2-year old pine trees were immersed for 2 minutes in distilled water alone (batch 1), in LAS-distilled water (batch 2), or LAS-synthetic sea water (batch 3). The objective was to simulate the exposure to severe storms on the seashore. Only the aerial parts of the plants were immersed in a large volume container (50 x 50 x 8 cm) containing 1 L of the respective solutions. The root system was isolated with a plastic bag enclosure and not exposed directly to the solutions. Controls were run on ten plants. Trees were removed from the solutions and gently shaken to eliminate liquid droplets. Radiolabeled and control trees were kept in a greenhouse for 48 hours under a 16:8 day:night photoperiod, temperatures of 22° C (day):16° C (night), and a constant relative humidity. Before analysis, the trees were washed twice in distilled water for 1 minute while shaking to simulate rainfall. Trees were cut back at the soil surface and the aerial part divided into several parts for analysis (epicuticular wax from needles, dewaxed needles, and remaining plant material consisting of branches without needles and tree stem). Respective samples were extracted, prepared, and the radioactivity measured in each fraction using a liquid scintillation cocktail and For scanning electron microscopy, 48 hours after the spectrometer. exposure period ten needles from each of the five replicates of treated and control plants were cut into small segments and air dried, fixed on aluminium stubs with conductive glue and carbon coated. Axial surfaces were examined with a Stereoscan 90B electron microscope with 15 kV acceleration voltage. Yes [] No [X] ? []

Stated by authors as LAS with an alkyl chain length of 12 carbons, with no further information. For our review, we have assumed this to be the typical European $C_{11.6}$ LAS (average MW = 342). LAS was radiolabeled with ³⁵S in the sulphonate group attached to the phenyl ring and had a specific radioactivity of 8712 µCi/mol.

The amount of LAS (as a percent of total in solution; mean \pm SD) found in each analyzed fraction of the trees and the wash water is shown below:

Fraction	Distilled water only	LAS-distilled water	LAS-seawater
	(Batch 1)	(Batch 2)	(Batch 3)
Epicuticular waxes	~ 0	0.18 ± 10	1.48 ± 1.03

GLP:

Results:

Test substance:

Dewaxed needles	~ 0	~ 0	0.09 ± 0.16
Remaining plant material	~ 0	~ 0	~ 0
Distilled water wash	~ 0	0.17 ± 0.06	1.41 ± 0.57

The amount of uptake and percent of the total radioactivity incorporated in each fraction for the LAS-seawater and LAS-distilled water treatments are shown below:

	LAS-seawater treatment	LAS-distilled water treatment
³⁵ S LAS uptake µg/mg dw		
Epicuticular waxes	9.96 ± 3.10	4.90 ± 1.10
Dewaxed needles	0.007 ± 0.001	~ 0
Remaining plant material	0.006 ± 0.001	~ 0
% of total radioactivity		
Epicuticular waxes	89.70 ± 6.02	96.90 ± 2.34
Dewaxed needles	9.90 ± 5.95	~ 0
Remaining plant material	0.37 ± 0.23	3.10 ± 0.02

After LAS exposure in seawater or distilled water, alterations of the epicuticular wax fine structure were observed by SEM.

Remarks: Forty-eight hours after exposure, half of the radioactivity detected was in the epicuticular waxes, with nearly all the rest in the washing solution. LAS was absorbed to a much greater extent in the seawater treatment (surface tension = 29 mN/m) than in the distilled water treatment (surface tension = 45 mN/m). LAS accumulated mainly in the epicuticular wax of the needles. Very little accumulated in the dewaxed needles or remaining plant material. More dramatic changes in epicuticular wax fine structure were observed following LAS treatment in seawater than in distilled water. These observations are in agreement with the studies reported by Hamwijk (2002) and Grieve and Pitman (1978), who demonstrated that low surface tension (<30 mN/m) could increase foliar penetration of salts from sea spray (dossier section 4.6.2h). Reference: Richard, B., Grieu, P., Badot, P.M., and Garrec, J.P. 1996. Influence of marine salts on the localization and accumulation of surfactant in the needles of Pinus halepensis Mill. Ann. Sci. For. 53:921-930. 2 Valid with restrictions Reliability:

4.6.3 TOXICITY TO OTHER NON MAMMALIAN TERRESTRIAL SPECIES (INCLUDING AVIAN)

Species:	Chicken (Leghorn hens)
Endpoint:	Mortality [X]; Reproduction rate []; Weight []; Other [X] egg quality
Exposure period:	45 day
Results:	NOEC = 200 mg/kg diet
Method:	Ten month old Leghorn chicken hens were given a dosage of 200 mg/kg in drinking water for 45 days. Four groups of six hens were used in the treatment group, with an additional six hens used as a control group.
GLP: Test substance:	Yes [] No [X] ? [] Commercial LAS

Remarks:	No mortality or adverse effects on egg quality occurred at 200 mg/kg. While this is a non-standard study, it does indicate that up to 200 mg/kg in
	the drinking water does not adversely affect hens or egg laying.
Reference:	Lopez-Zavalla, A., de Aluja, A.S., Elias, B.L., Manjarrez, L., Buchmann,
	A., Mercado, L., and Caltenco, S. 1975. The effects of ABS, LAS and
	AOS detergents on fish, domestic animals and plants. Prog. Water
	Technol. 7:73-82.
Reliability:	2 Valid with restrictions

4.7 **BIOLOGICAL EFFECTS MONITORING (INCLUDING BIOMAGNIFICATION)**

(a)

Type of test:

static []; semi-static []; flow-through []; other [X] outdoor experimental streams

open-system [X]; closed-system []

Analytical monitoring: Yes [X] No []?[]

Method and Results: An integrated model stream ecosystem fate and effects study of a $C_{12}LAS$ homologue, with a high content (35.7%) of its most hydrophobic and toxic 2-phenyl isomer, was performed in the summer and fall of 1996 in Procter and Gamble's Experimental Stream facility. The study addressed responses of periphytic microbes, immature benthic fauna including abundance and drift, and emergence of adult insects in a 56-day exposure. Exposures ranged from 126 to 2978 µg/L and were continuously presented in a single-pass, flow through test system. Microbial heterotrophs acclimated to C₁₂LAS exposure quickly (14 days) and biodegraded C₁₂LAS at all concentrations. Blue-green algae responded by increasing in abundance with increasing C₁₂LAS concentration. Invertebrates responded by increased drift and reduced benthic abundances at concentrations exceeding 293 µg/L. Emergence at 927 µg/L also declined relative to the control. Adverse responses for mayflies and chironomids were indicated using univariant statistical techniques. Multivariant techniques indicated these taxa plus molluscs, aquatic worms, caddisflies, and stoneflies were impaired at some concentrations. Bioavailability of C12LAS was investigated in streams as a function of the total suspended solids load in the water column driven by local weather and watershed patterns. A continuous bioavailability model indicated exposure was reduced by an average of A model ecosystem NOEC (no-observed-effect- $8.5 \pm 8.9\%$ concentration) was concluded to be 293 µg/L based on measured water column exposure and adjusted to 268 µg/L by the bioavailability model. A summary of selected population and community responses at 8 weeks from the current study is shown in the following table:

Community/Measure	Dose Response	Temporal	NOEC (µg/L)
Heterotrophic microbial			
Biomass (total lipid phosphate/mm ²)	NS		
Amino acid uptake (³ H dpm/mm ² /min)	NS		
Phospholipid fatty acid (PLFA) distr.		Shift at >293 μg/L	
Surfactant mineralization (% CO ₂)		Acclimation at all conc.	
Autotrophic microbial			

Disort anote writely $({}^{14}C$ draw $/mm^2/min)$			
Algel density (cells (mm ²)	+	+	
Algal density (cells/mm) (um^3/mm^2)	INS NC		
Algai blovolume (μ m /mm)	INS		
Green algal density (cells/mm)		++	
Distance algorithm (cells/mm)	INS NS		
Algel richness	IND		027
Algal fictness $D_{\text{answer}}(a)^{1} (a)^{1} (a)^{2}$	-	-	927
Dominant taxa (cells/mm)			027
Cocconeis piacentula	-	-	927
Melosira varians	INS		
Chrococcus sp.	+	+	
Nitzschia dissipata	NS		
Navicula salinarum v. intermedia	NS		
Pleurosira (= Biddulphia) laevis	NS		
Nitzschia inconspicua	++	++	
Nitzschia palea	+	+	
Diatoma vulgare			927
Gyrosigma acuminatum	-	-	927
Invertebrates			
Richness	NS		
Diversity (Shannon-Weaver)	NS		
Total abundance (No./m ²)			293
Insect abundance (No./m ²)	NS		
EPT abundance (No./m ²)	-	-	927
Mayfly abundance (No./m ²)	NS		
Caddisfly abundance (No./m ²)	NS		
True fly abundance (No./m ²)	NS		
Chironomid abundance (No./m ²)	NS		
Mollusk abundance (No./m ²)	NS		
Oligochaete abundance $(No./m^2)$			293
Dominant populations $(No./m^2)$			
Baetis sp. (mayfly)	b		
Isonychia sp. (mayfly)			927
Stenonema sp. (mayfly)	NS		
Thienemannimyla sp. (chironomid)			293
Tanytarsus sp. (chironomid)	++	++	
Cricotopus sp. (chironomid)	+	+	
Polypedilum sp. (chironomid)	+	+	
Reotanytarsus sp. (chironomid)	NS		
Naididae (aquatic worm)	NS		

^a Plus (+) and minus (-) signs indicate whether the response significantly increased or decreased from the control condition ($\alpha = 0.05$). The strength to the response was graded as slight (+/-), moderate (++/--), or great (+++/---) based on statistical analyses. NS indicates not significant. ^b Taxon too low in abundance, emerged.

A literature review of 13 available model ecosystem studies was conducted and NOEC conclusions were adjusted by a structure-activity-relationship to dodecyl chain length (sulfophenyl position and distribution being ignored due to lack of information in the reviewed studies). Lentic studies (n = 7) were found to have higher NOECs than lotic studies (n = 6) and were more variable. Mean NOEC \pm standard deviations for all studies, lentic studies only, and lotic studies only were 3320 \pm 6040, 5720 \pm 7640, and 530 \pm 430 µg/L, respectively. Interpretation of results for anomalies from specific studies suggest the

GLP: Test substance: Remarks:	importance of experimental design, use of laboratory versus natural surface water, biological complexity of the test system, and physical test system design as relevant factors for consideration. Yes [X] No [] ? [] Dodecyl linear alkylbenzene sulfonate ($C_{12}LAS$) (CAS# 25155-30-0) The mesocosm studies indicate that the lower limits of field studies can be considered between 0.12 to 0.5 mg/L. It should be noted that the lowest NOEC value (0.12 mg/L) was observed in an artificial stream study (Tattersfield et al. 1995, 1996) in which river water was seeded from field collections and a hydrocyclone used to prevent colonization of biota throughout the study. Drift therefore comprised only emigration and not immigration. Thus, the Tattersfield et al. study is an ecologically restrictive study design that ignores the importance of recovery vectors present in natural systems. The current study (Belanger et al. 2002) did not have these design limitations. The current critical review of all field studies, including the Tattersfield et al. study, concluded that a NOEC = 0.27 mg/L for a $C_{12}LAS$ homologue (0.37 mg/L if normalised to $C_{11.6}$ LAS) is the most reliable, robust and defendable value for the aquatic freshwater ecosystem. This is a key study for aquatic toxicity in model ecosystems (see SIAB Table 15).
Reference:	Belanger, S.E., Bowling, J.W., Lee, D.M., LeBlanc, E.M., Kerr, K.M., McAvoy, D.C., Christman, S.C., and Davidson, D.H. 2002. Integration of aquatic fate and ecological responses to linear alkyl benzene sulfonate (LAS) in model stream ecosystems. Ecotoxicology and Environmental Safety 52:150-171
Reliability:	1 Valid without restriction
(b) Results:	Time averaged mean measured concentrations over the 28 day exposure period were 0.03, 0.06, 0.12, 0.32, 0.52, 1.0 and 3.0 mg/L in the artificial streams and 0.24, 0.81, and 2.0 mg/L in the downstream pools. Problems were experienced with dosing LAS into the streams after day 45 due to extreme weather conditions causing freezing of stock solutions of LAS in the delivery tubes. Results should therefore be treated with caution as exposure data is extrapolated from 45 to 56 days. Time averaged mean measured concentrations over the first 45 days of the 56 day study period were 0.03, 0.06, 0.12, 0.32, 0.52, 1.0 and 3.0 mg/L in the artificial streams and 0.22, 0.69, and 1.6 mg/L in the downstream pools. A total of 65 taxa were identified in the artificial streams and downstream pools. Effects data were generated for 24 endpoints, which included ten invertebrate taxa, two fish species and algae. The inclusion of downstream pool sections increased the range of taxa investigated. The downstream pool community appeared generally less sensitive to the LAS than the stream channel community. Individual taxa were found to differ in susceptibility to LAS depending on their location in the stream channels. The same taxa were generally more susceptible when in the riffle section than in the pool sections. This may have been the result of differences in exposure or physiological state of the organism. Results from the first 28 days of the study concluded that there were no NOECs below 0.12 mg/L. Extending the study to 56 days resulted in no change in NOECs for the majority of endpoints. NOECs determined in the artificial streams were in the range of 0.03 to >3.0 mg/L although the

most reliable NOECs were in the range 0.12 to 3.0 mg/L. In the downstream pools the NOECs ranged from 0.69 to >1.6 mg/L. Only two NOECs were below 0.12 mg/L; the population density of Gammarus pulex in the riffle and population density of Baetis sp. Some uncertainty is associated with the extended 56 day study due to three main factors. First, lack of exposure data between days 45 and 56. Further uncertainty is associated with the low NOECs for some end points, particularly for G. *pulex* in the riffle section of the artificial streams. Second, the uncertainty in the lower NOEC is due to the times dependent effects (increased susceptibility at 56 compared to 28 days) only being observed for individuals of G. pulex in the riffle but not the pool section of the artificial streams. Reduction in NOEC from 28 to 56 days for G. pulex in the riffle was not evident in the pool section of the artificial streams where the 28 and 56 day NOEC was 0.52 mg/L. The exact cause of the difference between riffle and pool is unknown. Third, uncertainty was due to variability of the G. *pulex* data and sensitivity to statistical transformation. The lowest NOEC value observed in this artificial stream study was 0.12 Conclusion: mg/L. However, the river water was seeded from field collections and a hydrocyclone used to prevent colonization of biota throughout the study. Drift therefore comprised only emigration and not immigration. This is an ecologically restrictive study design that ignores the importance of recovery vectors present in natural systems.

Method: Communities of freshwater organisms were established in eight artificial streams and four downstream pools over a 10 day period, five weeks prior to the onset of dosing. Seven nominal LAS exposure concentrations (0.02, 0.05, 0.1, 0.3, 0.5, 1.0 and 3.0 mg/L) and an untreated control were randomly allocated to the eight artificial streams to yield a regression model experiment design. Four of the streams (Control, 0.3, 1.0 and 3.0 mg/L) were connected to downstream pools. Effects measurements were taken after 28 and 56 days.

The streams were operated as once-through systems with a residence time of three minutes. Each individual stream was divided approximately equally into a slow flowing pool section (0.20 m water depth, \sim 3 cm/s flow velocity) and a faster flowing riffle section (0-0.02 m water depth, \sim 30 cm/s flow velocity). The total volume of water in each stream system was 240 litres. The downstream pools consisted of plastic cylindrical tanks (1.04 m diameter and 510L capacity) with a residence time of approximately 2 days.

The water used in the study was from a local chalk stream with a hardness of 194 to 392 and 280 to 378 mg/L CaCO₃ in the streams and downstream pools, respectively. The water temperature was relatively low ranging from 3.0 to 13.2°C and 3.2 to 13.1°C in the streams and downstream pools, respectively. Concentrations of suspended solids and total organic carbon (TOC) in the artificial streams were low (suspended solids 1.8 to 3.0 and 0.4 to 6.6 mg/L and TOC 1.5 to 5.2 and 1.9 to 7.9 mg/L in the steams and downstream pools, respectively). The low concentrations of suspended solids and TOC would have tended to maximise the availability of LAS in the system. Also Goyer et al. showed that toxicity of surfactants to daphnia correlated with water hardness. Given the above conditions, effects data generated in this system should be judged to be at the most sensitive end of the distribution.
Effects measurements were taken after 28 and 56 days. The streams were operated as once-through systems with a residence time of three minutes. Each individual stream was divided approximately equally into a slow flowing pool section and a fast flowing riffle section. There is uncertainty connected to the extended 56 day study having to do with the lack of exposure data between days 45 and 56. Uncertainty is also linked with the low NOEC values for some of the end points. This is related to time dependant effects (increased susceptibility at 56 compared to 28 days) being observed only for individuals of <i>G. pulex</i> in the riffle but not the pool section of the artificial streams and variability of the <i>G. pulex</i> data and sensitivity to statistical transformation. The NOEC values of ≥ 0.12 mg/L determined after 28 days of exposure are considered estimates of no effect for LAS. For the previously mentioned reasons, the indications of NOECs below 0.12 mg/L from the extended 56 day study appear to be outliers and are not considered reliable for assessment purposes (i.e., would be Klimish 3). Also, it should be noted that a hydrocyclone was used to prevent colonization of biota throughout the study. Thus, drift comprised only emigration and not immigration. Therefore, the study design is ecologically restrictive in that it ignores the importance of recovery vectors present in natural systems. In a review of 13 model ecosystem studies, including this one, Belanger et al. (2002) concluded that a NOEC of 0.27 mg/L for a C ₁₂ LAS homologue is the most reliable, robust and defendable vaule for aquatic freshwater ecosystems.
AS, 38.3% active matter, average carbon chain length = 11.52
 Tattersfield, L.J., Holt, M., Girling, A.G., Mitchell, G.C., Pearson, N., and Ham, L. 1995. The fate and effects of linear alkylbenzene sulfonate (LAS) in outdoor artificial streams and pools. External report. Shell Research Limited, Sittingbourne Research Centre. Document No. SBER.95.009. Tattersfield, L.J, Mitchell, C.G., Holt, M., Girling, A.G., Pearson, N., and Ham, L. 1996. Linear alkylbenzene (LAS): Fate and effects in outdoor artificial streams and pools – An extended study. Internal report
Shell Research and Technology Centre, Thornton. Document No.
TNER.96.005.
4 Not assignable due to restrictive test design and inconsistencies in the data
Aquatic []; Field []; Soil [X]; Other []
LAS had no effect on heterotrophic respiration in the sludge compartment but stimulated activity and metabolic quotient (microbial activity per unit of biomass) in the surrounding soil. Basil respiration (BR) was significantly stimulated up to 60 days in the 0-10 mm compartment, but only after 60 and 82 days in the 10-30 mm compartment. No significant stimulation in BR was observed at 30-60 mm. Substrate-induced respiration stimulation was variable and restricted only to soil in the 0-10 mm compartment. Autotrophic ammonia oxidation was initially inhibited in the LAS-spiked sludge, which led to dramatic but transient increases of NH ₄ ⁺ availability in the sludge and surrounding soil, subsequently stimulating soil ammonia oxidizers. As judged from a bioluminescence toxicity assay however LAS or other sludge components never

accumulated to toxic levels in the soil and the LAS tolerance of the indigenous microbes further remained unchanged following LAS exposure. Bioluminescence was slightly, but not significantly, reduced in the 0-10 mm compartment at the first sampling, but not thereafter and not in the 10-30 or 30-60 mm compartments. LAS effects on the microbial populations largely occurred during the first two months and were confined to soil closer than 30 mm from LAS-spiked sludge.

Test Substance: C₁₀₋₁₃ LAS, sodium salt; average alkyl chain length C_{11.6}

Method: Well-defined bands of sewage sludge spiked with 0 (control), 7.1, or 31.3 g LAS/kg dry weight were applied to loamy sand soil in an agricultural field in Lundgaard, Denmark using a random block design. To each block, three sludge bands (one per LAS treatment) were carefully applied such that the bands were eventually applied at a specific soil depth of approximately 6 to 10 cm and covered by soil. All treatments were replicated five times. A few days after sludge application, the entire experimental site was sown with oats in order to make experimental conditions as realistic as possible. Sampling for microbial parameters was done on a weekly to monthly basis for the first 100 days, with the last samples being taken approximately one year after the start of the experiment. A rectangular corer providing a 40 mm wide cross section of the sludge bands and the surrounding soil was sectioned into four compartments representing various distances (0-10, 10-30, 30-60 mm) from the sludge. At each sampling date, two replicate cores from each sludge band were sampled and the corresponding samples from the two cores were pooled. Microbial parameters measured included basal respiration (BR), substrate-induced respiration (SIR), potential ammonia and pollution-induced community oxidation (PAO), tolerance. Bioluminescence toxicity tests were also conducted and correlated with ammonia oxidation activity as a measure of the physiological state of the cells. Two-way analysis of variance statistics were used for each sampling date, followed by Dunnett's test. Data were transformed if necessary. Remarks: Measured LAS concentrations were 0.069 (control), 7.1 and 31.3 g/kg dw sludge. Results strongly suggest that disposed of LAS-contaminated sludge will not produce a significant adverse effect on the function of the soil microbial community under field conditions. Measured effects generally lasted two months or less and were confined to soil closer than 30 mm from the LAS-spiked sludge. No signs of long-term selection due to toxicity were noted. According to the authors, the study should be considered a worst-case due to the application of high LAS concentrations only occasionally encountered in sewage sludge, the use of LAS-spiked sludge possible overestimating the actual bioavailability relative to aged surfactants in natural sludge, the application of relatively large (4 x 4 cm) two dimensional sludge bands possible retarding oxygen intrusion and consequently LAS degradation in the sludge relative to smaller spherical sludge clumps present under more realistic field conditions, and the use of a coarse, sandy soil with relatively low organic matter content. While

a coarse, sandy soil with relatively low organic matter content. While NOEC, LOEC, EC50, etc. were not calculated, significant differences from the control sludge were detected in the high (31.3. g/kg dw sludge) and in the low (7.1 g/kg dw sludge) treatments. Therefore, the NOEC should be <7.1 g/kg dw sludge.

Reference: Brandt, K.K., Krogh, P.H., and Sorensen, J. 2003. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil

Reliability:	surrounding sludge bands spiked with linear alkylbenzene sulfonate: a field study. Environ. Toxicol. Chem. 22:821-829.2 Valid with restriction. Well documented publication, no GLP, concentrations only measured at start of experiment
(d) Type:	Aquatic []; Field []; Soil [X]; Other []
Results:	No short-term or long-term (4 years) adverse effects on 9 different microbial functions/processes or the abundance or diversity of microarthropods and earthworms were observed after sludge application of up to 21 t dw/ha dry weight, corresponding to a LAS dose of approximately 35 kg/ha, or approximately 15 mg/kg dry weight.
Method:	This study was conducted by the Danish EPA to assess the effects of using sewage sludge applications on soil fauna and microbial processes in winter-wheat and barley undersown with clover grass. Three levels of sludge and cow dung (3.5, 7, and 21 t dw/ha) were tested along with control fields. Concentrations of LAS in sludges from the two waste water treatment plants were 1,100 and 1,700 mg/kg.
Test Substance:LAS (u	inspecified)
Reference:	1) Jensen, J., Lokke, H., Holmstrup, M., Krogh, P.H. and Elsgaard, L. 2001. Effects and risk assessment of linear alkylbenzene sulfonates in agriculture soil. 5. Probabilistic risk assessment of linear alkylbenzene sulfonates in sludge-amended soils. Environ. Toxicol. Chem. 20:1690-
Daliahilika	 Jensen, J. and Krogh, P.H. 1999. Ecological assessment of sewage sludge application. Proceedings, Nordiska Jordbruks forskares Forening, Seminar 292. Jokionen, Finland, November 23-25, 1998, pp. 98-100. Krogh, P.H., Holmstrup, M., Jensen, J., and Peterssen, S.O. 1997. Ecotoxicological assessment of sewage sludge in agricultural soil. Working Report No. 69. Ministry of Environment and Energy, Danish Environmental Protection Agency.
Renability:	2 Valid with restrictions
(e)	
Туре:	Aquatic []; Field []; Soil [X]; Other []
Species: Exposure Period:	cellulolytic bacteria, fungi and actinomycetes and microbial parameters up to 8 weeks
Results:	$EC_{50} = 17$ to 128 mg/kg dry weight for all parameters other than as indicated.
	$EC_{10} = < 8$ to 22 mg/kg dry weight for all parameters other than as indicated.
	Except for β -glucosidase activity, basal respiration, and total PLFA content, all soil parameters were sensitive to LAS, with EC ₁₀ values in the range of less than 8 to 22 mg/kg dry weight. The authors indicate that this probably reflected a similar mode of LAS toxicity, ascribed to cell membrane interactions, and showed than sensitivity to LAS was common for various soil microorganisms. The extracellular β -glucosidase activity was rather insensitive to LAS (EC ₁₀ , 47 mg/kg dry weight), whereas the basal soil respiration was not inhibited even at 793 mg/kg dry weight. This was interpreted as a combined response of inhibited and stimulated
	decrease even at 488 mg/kg.

Analytical monitoring: Yes **[X]** No **[**] ? **[**] Method: The short-term effects

Method:	The short-term effects of aqueous LAS on microbial parameters was tested in a sandy agricultural soil that was incubated for up to 11 days. The assays included 10 microbial soil parameters: ethylene degradation; potential ammonium degradation; potential dehydrogenase activity; β - glucosidase activity; iron reduction; populations of cellulolytic bacteria, fungi and actinomycetes; the basal soil respiration; and the phospholipid fatty acid (PLFA) content. Soil from the plough layer was sampled at an agricultural field at Lundgaard, Denmark. The soil consisted of coarse sand (67%), fine sand (16%), silt (8.6%), clay (6.2%), humus (2.7%) and had a total carbon content of 1.5%. The soil had not been treated with sewage sludge and had not been sprayed with pesticides in the last two years. For the experiments with aqueous LAS, triplicate soil incubations were amended with the appropriate LAS solutions to produce the LAS contents. The soils were carefully mixed and incubated in the dark and duplicate soil samples for LAS analyses were frozen at the beginning of the incubation period. EC ₁₀ and EC ₅₀ values were calculated by a linear- interpolation analysis (IC _p), which was based on bootstrapping. The NOECs and LOECs were determined by Dunnett's test using a SAS analysis-of-variance procedure. Nominal concentrations were control, 8, 22, 62, 174 and 488 mg/kg dw soil, except for BR (control, 0.8, 8, 79 and 793 mg/kg dw soil). On average, 84 to 95% of the nominal concentrations were initially recovered by the chemical analysis. Nominal levels were used for the calculation of effect concentrations. Ves 11 No 11 2 1X1
Test substance:	C_{10-13} LAS obtained as an aqueous sodium salt solution with a LAS content of 16.1% (w/w), Na-LAS average molecular weight = 342 g/mol, distribution: C_{10} 14%, C_{11} 34%, C_{12} 31%, and C_{13} 21%
Remarks:	The study demonstrated that LAS inhibited specific compartments of the soil microbial community. The lowest EC_{10} values for microbial soil parameters were slightly higher than the predicted no-effect concentrations recently derived for plants and soil fauna (~5 mg/kg dry weight). A subsequent study (Elsgaard et al. 2001, Part 2) further indicated that the short-term effects observed for aqueous LAS on soil microbiology were modified by the dosage of LAS with sewage sludge and by a prolonged incubation time. The data suggest that a terrestrial risk assessment based on short-term affects of aqueous LAS fully encompasses the risk that may occur when LAS is applied to agricultural soil by means of sewage sludge.
Reference:	 Elsgaard, L., Petersen, S.O., and Debosz, K. 2001a. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short- term effects on soil microbiology. Environmental Toxicology and Chemistry 20:1656-1663. Elsgaard, L., Petersen, S.O., and Debosz, K. 2001b. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 2. Effects on soil microbiology as influenced by sewage sludge and incubation time. Environmental Toxicology and Chemistry 20:1664- 1672.
Reliability:	2 Valid with restrictions. Well documented publication, no GLP, EC_x calculation not fully detailed.
(f) Type:	Outdoor experimental stream
* *	*

Methods:	Species or ecosystem studied. Taxonomic groups tested were periphyton, detritus, invertebrates, snails, amphipods, and fish. One concentration was tested in triplicate. The substance was dosed eight times at seven day intervals. Test duration 45 days. Effects monitored: Population and community effects
Results:	The best estimated NOEC is >0.36 mg/L. For fish (caged larval fathead minnows) no effects on mortality occurred at the only concentration tested. However growth was significantly decreased in the dosed systems. The authors state that this is caused by the better food and light conditions in the controls. Growth of periphyton, the degradation rate of detritus, population and community growth of invertebrates and the population density of snails were not inhibited at the only concentration tested. For Amphipods no NOEC could be determined. Mortality was highest (45%) at a control location. Chemical analysis: Concentrations were measured.
Test Substance:	LAS; average chain length $C_{11.9}$ (representative of homologues found in typical sewage effluents in the U.S.).
Reference:	Fairchild, J.F., Dwyer, F.J., La Point, T.W., Burch, S.A., and Ingersoll, C.G. 1993. Evaluation of a laboratory-generated NOEC for linear alkylbenzene sulfonate in outdoor experimental streams. Environ. Toxicol. Chem. 12:1763-1775.
Reliability:	2 Valid with restrictions
(g)	
Methods:	Species or ecosystem studied: Outdoor ponds were used with three compartments (700 L each) with sediment. Taxonomic groups tested were phytoplankton, plants, cyclopedia, and cladocerans. Two concentrations were tested with no duplicates. Test duration 56 days and one year. Effects monitored: Population and community effects. Chemical analysis: The substance was dosed according to need.
Results:	For phytoplankton slight inhibition of photosynthesis and chlorophyll occurred at 5.0 mg/L. The best estimated NOEC was determined at slightly below 5 mg/L. For plants reduction of species number and composition and for cladocerans inhibition of development occurred at the highest concentration tested. The best estimated NOEC for these groups was 5.0 mg/L. The best estimated LOEC was 10 mg/L. For cyclopedia egg production was reduced at 5 mg/L. The best estimated NOEC was determined at 3.5 mg/L. The best estimated LOEC was 5 mg/L. For midge no NOEC could be determined. Survival was strongly reduced due to low owner concentrations and a high level of suspended solids.
Substance: Remarks:	LAS; chain length is probably C_{12} . A concentration-effect relationship was found. Concentrations were measured. Data as reported by BKH, Huls, and Henkel in IUCLID dataset for CAS #90194-45-9 dated 19 February 2000.
Reference:	Huber, W., Zieris, F.J., Feind, D., and Neugebaur, K. 1987. Ecotoxicological evaluation of environmental chemicals by means of aquatic model ecosystems (Translation). Bundesministerium fuer Forschung und Technologie, Research Report (03-7314-0).

Reliability:	4 Not assignable. Original report not available for review.
(h)	
Type:	Laboratory aquaria
Methods:	The effect of LAS on the structure and function of microbial communities was studied in a flow-through model ecosystem containing several trophic levels. The LAS was applied to 19-L glass aquaria in either well water (Phase I) or sewage effluent (Phase II). In Phase I, duplicate chambers contained water and 2.5 cm lake sediment (Winton Lake, Cincinnati, OH) and several trophic levels (bacteria, algae, macrophytes [<i>Elodea</i> <i>canadensis,Lemna minor</i>], macroinvertebrates [<i>Daphnia magna,</i> <i>Paratanytarsus parthenogenica</i>], and fish [<i>Lepomis macrochirus</i>]). Chambers were allowed to equilibrate for about four weeks and then were exposed to 0.5 and 5.0 mg/L LAS. Flow rate in the proportional diluter delivered 6 to 10 replacement volumes per day. In Phase II, the aquaria were supplied with LAS in sewage effluent to simulate more closely the situation in an actual receiving stream. Sewage effluent was generated in a continuous activated sludge (CAS) unit and was adjusted to maintain 50 percent LAS degradation. Effluent from the CAS unit was then supplied to the test chambers at sewage dilutions of 3 and 30 percent to achieve nominal undegraded LAS concentrations of 0.5 and 5.0 mg/L, respectively. Test duration was 28 days. Microbial structure was estimated by measurements of total viable bacterial biomass as CFU/mL. Microbial function was estimated in Phase I by measuring the rates of oxygen consumption during the degradation of glucose and LAS. In
Results:	Phase II, microbial function was assayed by radiochemical methods. In Phase I, the structure of microbial communities was not affected, and no significant differences were reported in mean biomass or number of colony-forming units between the microorganisms exposed at the two levels. The mean total biomass calculated for all tanks and across all sampling points was about 3 x 10^5 CFU/mL. The function of the microbial communities was reduced only at 5.0 mg/L. In Phase II, no effect was seen on the structure of the microbial community, with mean CFU/mL in the low and high dose aquaria (0.9 x 10^5 and 1.4×10^5 , respectively) similar to the control aquaria (1.4×10^5). Also, no effects were observed microbial function in Phase II, which was measured only as the degradation of LAS. Therefore, the NOEC based on the most
Substance:	sensitive endpoint (microbial community function) is 0.5 mg/L. LAS; radiolabeled C^{14} -LAS with chain length C_{12} (91% purity) plus unlabeled LAS with average chain length $C_{11.6}$ (C_{10} 9.7%, C_{11} 27.9%, C_{12} 54.4%, C_{13} 8.0%; 95% purity)
Remarks:	Function assays in Phase II were based on LAS degradation only, since the Phase I results indicated that LAS degradation was the most sensitive indicator of toxic effect levels
Reference:	Larson, R.J. and Maki, A.W. 1982. Effect of linear alkylbenzene sulfonate on the structure and function of microbial communities in model ecosystems. Aquatic Toxicology and Hazard Assessment: Fifth Conference, ASTM STP 766, Pearson, J.G., Foster, R.B., and Bishop, W.E., Eds., American Society for Testing and Materials, pp. 120-136.
Reliability:	2 Valid with restrictions
(i)	

Type: Methods:

Laboratory aquaria

Two exposures were conducted. Phase I was designed to develop basic toxicological information. Phase II introduced partially degraded LAS contained within the effluent of a continuous activated sludge unit and was designed to to simulate real-world fate and effects for LAS. In Phase I, duplicate 19-L glass aquaria containing model ecosystems at four nominal concentrations (0.5, 1.0, 2.0, 4.0 mg/L) contained water and 2.5 cm lake sediment (Winton Lake, Cincinnati, OH) and several trophic levels (bacteria, algae, macrophytes [Elodea canadensis, Lemna minor], macroinvertebrates [Daphnia magna, Paratanytarsus parthenogenica], and fish [Lepomis macrochirus]). Flow rate in the proportional diluter delivered approximately 8 replacement volumes per day. Additionally, at each cycle of the diluter, 1.5 mL of a Daphnia food suspension diluted with a culture of Selenastrum was added to each chamber. Following an initial 3 day acclimation period to analytically confirm test concentrations, 4 glass periphyton slides (5 x 5 cm), 8 vegetative shoots of *Elodea*, 10 early instar Daphnia, 25 midge eggs and 5 pre-weighted juvenile bluegills (2.5-5.0 cm length) were added to each aquarium. Fish were screened from access to the macroinvertebrates by a 60 mesh stainless steel screen and were fed a daily supplement of frozen brine shrimp. In Phase II, the aquaria were supplied with LAS in sewage effluent to simulate more closely the situation in an actual receiving stream. Sewage effluent was generated in a continuous activated sludge (CAS) unit and was adjusted to maintain 50 percent LAS degradation. Effluent from the CAS unit was then supplied to the test chambers at continuous dilutions of 3.75, 7.5, 15, and 30 percent sewage concentrations to simulate sewage dilutions existing in natural receiving waters. Test duration was 28 days. Effects monitored included population and community effects. Nominal concentrations were confirmed with MBAS analysis.

Dissolved oxygen concentrations ranged between 7.0 and 9.0 mg/L during Phase I. Dissolved oxygen concentrations in Phase II ranged between 3.1 and 7.3 mg/L, with the lowest readings consistently observed in the aquaria receiving the 30% sewage concentrations, as would be expected. Temperature was maintained at 2°C, mean pH was 8.1 ± 0.2 in Phase I and 7.5 \pm 0.3 in Phase II. MBAS analysis confirmed the nominal concentrations.

No significant effects on microbial community structure occurred in Phase I, with biomass levels in the high dose (4.0 mg/L) comparable to or greater than the biomass levels in the controls. Similarly, no significant effects on microbial community structure were observed in Phase II. The function of microbial communities in Phase I was affected at the high dose (4.0 mg/L), as evidenced by significant depression in the rates of both glucose and LAS degradation. No effects on microbial function were observed in Phase II. No dose response correlation in overall productivity was evident for the periphyton (aufwuchs) community in Phase I. In Phase II, the introduction of the sewage effluent produced a generally higher turbidity level and the higher organic concentrations were conducive to the growth of thick sheets of bacterial and fungal communities. Very little direct periphytic plant growth was observed. The stimulatory effect of the increasingly higher sewage concentration is evident in the progressively higher aufwuchs production observed between 3.75 and 30% effluent. No effects on Elodea production were observed in Phase I. However, in

Results:

Phase II, *Elodea* and *Lemna* plant growth was inhibited at all concentrations except 3.75% by the increased bacterial and fungal periphyton growth as periphytic sheaths tended to cover the leaves and vegetative tips of the macrophytes. Evaluation of the Daphnia magna data from Phase I is confounded by unexpected poor control survival, although productivity appeared to be lower in the 1.0, 2.0 and 4.0 mg/L concentrations than at 0.5 mg/L. In Phase II, all Daphnia died in the 30% sewage concentration but production reached much greater numbers in the other concentrations than they did in Phase I. The midge species had an apparent reduction in numbers at 4.0 mg/L compared to the controls in Phase I. In Phase II, erratic growth in the controls and all exposures led to no meaningful midge survival at the end of Phase II. Bluegill fish growth at the end of Phase I was reduced at the 2.0 and 4.0 mg/L concentrations but not at 0.5 or 1.0 mg/L. In Phase II, fish in all wastewater dilution concentrations from 3.75 to 30% grew less than the controls. The following table summarizes the NOEC values (mg/L) for Phase I and Phase II. as determined from the data described above.

Species	Phase I	Phase II
Bacterial Structure	4.0	30%
Bacterial Function	1.41 ^a	30%
Periphyton/Algae	4.0	3.75%
Elodea	4.0	3.75%
Duckweed (Lemna minor)	Not Reported	3.75%
Daphnia magna	b	^c
Midge (Paratanytarsus parthenogenica)	2.0	^c
Bluegill (<i>Lepomis macrochirus</i>)	1.0	<3.75%

^a Data available only for the low and high concentrations (0.5-4.0 mg/L). Value is geometric mean. ^b Poor control survival precludes calculation of a NOEC.

^c Data not interpretable

Therefore, the NOEC based on the most sensitive endpoint (bluegill growth) is 1.0 mg/L.

LAS; C^{14} -LAS chain length C_{12} (91% purity) plus unlabeled LAS with Substance: average chain length C_{11.6} (C₁₀ 9.7%, C₁₁ 27.9%, C₁₂ 54.4%, C₁₃ 8.0%; 95% purity) Reference: Maki, A.W. 1981. A laboratory model ecosystem approach to environmental fate and effects studies. Unpublished Internal Report, Environmental Safety Department Procter & Gamble Company, Cincinnati, Ohio. Reliability: 2 Valid with restrictions

(j)

Type: Methods: *In situ* river exposures

Species or ecosystem studied: Test system was rectangular plexiglass plates (108 cm²) suspended in river water. Plates were colonized with periphyton for four weeks before testing at locations above and below the Xenia sewage treatment plant outfall in the Little Miami River (Ohio). Studies below the outfall assessed the toxicity of LAS in the presence of 2030% treated municipal effluent. Colonized plates were then placed in five submerged plexiglass tubes (1 cm thick, 1 m long), which were then

	attached to an aluminium frame supported by rubber floats. LAS stock
	solutions were stored in 80-L polypropylene containers on the river bank
	and solutions were pumped daily at a delivery rate adjusted based on river
	flow to maintain four concentrations $(0.2, 1.1, 9.8 \text{ and } 28.1 \text{ mg/L})$ and a
	control. Duplicate set ups were used as replicates. Identical set ups were
	used above and below the outfall.
	Test duration 21 days.
	Effects monitored: Phytoplankton inhibition of photosynthesis and
	reduction of the number of taxa was determined.
	Chemical analysis: Concentrations were measured.
Results:	For inhibition of photosynthesis the best estimated NOEC and LOEC were
	9.8 and 28.1 mg/L respectively. At the highest concentration tested the
	number of taxa was not reduced. For this effect parameter the best
	estimated NOEC was >28.1 mg/L.
Substance:	Dodecyl LAS (CAS #25155-30-3); average chain length $C_{11,9}$; average
	molecular weight 346; C_{10} 9%, C_{11} 30%, C_{12} 34%, C_{13} 19%, C_{14} 9%
Remarks:	A concentration-effect relationship was found. Suspended solids were
	measured.
Reference:	Lewis, M.A., Pittinger, C.A., Davidson, D.H., and Ritchie, C.J. 1993. In
	situ response of natural epiphyton to an anionic surfactant and an
	environmental safety assessment for phytotoxic effects. Environ Toxicol
	Chem 12:1803-1812
	Chem. 12.1005 1012.
Reliability:	2 Valid with restrictions
Reliability:	2 Valid with restrictions
Reliability:	2 Valid with restrictions
Reliability: (k) Type:	2 Valid with restrictions
Reliability: (k) Type: Methods:	2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were
Reliability: (k) Type: Methods:	2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate
Reliability: (k) Type: Methods:	2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate.
Reliability: (k) Type: Methods:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months.
Reliability: (k) Type: Methods:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months.
Reliability: (k) Type: Methods:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined
Reliability: (k) Type: Methods:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined.
Reliability: (k) Type: Methods:	2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured.
Reliability: (k) Type: Methods: Results:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC₅₀ values were 3.4 and 1.9 mg/L for C₁₂ and C₁₃, respectively.
Reliability: (k) Type: Methods: Results:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC₅₀ values were 3.4 and 1.9 mg/L for C₁₂ and C₁₃, respectively. The ranges of EC₅₀ values for the different tests were 0.5-8.0 and 0.2-8.1
Reliability: (k) Type: Methods: Results:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC₅₀ values were 3.4 and 1.9 mg/L for C₁₂ and C₁₃, respectively. The ranges of EC₅₀ values for the different tests were 0.5-8.0 and 0.2-8.1 mg/L for C₁₂ and C₁₃, respectively.
Reliability: (k) Type: Methods: Results: Substance:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC₅₀ values were 3.4 and 1.9 mg/L for C₁₂ and C₁₃, respectively. The ranges of EC₅₀ values for the different tests were 0.5-8.0 and 0.2-8.1 mg/L for C₁₂ and C₁₃, respectively. Dodecyl LAS; average chain length C_{11.8} (CAS #25155-30-3); and The section of the section of
Reliability: (k) Type: Methods: Results: Substance:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC₅₀ values were 3.4 and 1.9 mg/L for C₁₂ and C₁₃, respectively. The ranges of EC₅₀ values for the different tests were 0.5-8.0 and 0.2-8.1 mg/L for C₁₂ and C₁₃, respectively. Dodecyl LAS; average chain length C_{11.8} (CAS #25155-30-3); and Tridecyl LAS, average chain length C_{13.3}(CAS #26248-24-8).
Reliability: (k) Type: Methods: Results: Substance: Remarks:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC₅₀ values were 3.4 and 1.9 mg/L for C₁₂ and C₁₃, respectively. The ranges of EC₅₀ values for the different tests were 0.5-8.0 and 0.2-8.1 mg/L for C₁₂ and C₁₃, respectively. Dodecyl LAS; average chain length C_{11.8} (CAS #25155-30-3); and Tridecyl LAS, average chain length C_{13.3} (CAS #26248-24-8). A concentration-effect relationship was found. Suspended solids were not
Reliability: (k) Type: Methods: Results: Substance: Remarks:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC₅₀ values were 3.4 and 1.9 mg/L for C₁₂ and C₁₃, respectively. The ranges of EC₅₀ values for the different tests were 0.5-8.0 and 0.2-8.1 mg/L for C₁₂ and C₁₃, respectively. Dodecyl LAS; average chain length C_{11.8} (CAS #25155-30-3); and Tridecyl LAS, average chain length C_{13.3} (CAS #26248-24-8). A concentration-effect relationship was found. Suspended solids were not measured. The wide range of EC₅₀ values is in part due to seasonal
Reliability: (k) Type: Methods: Results: Substance: Remarks:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC₅₀ values were 3.4 and 1.9 mg/L for C₁₂ and C₁₃, respectively. The ranges of EC₅₀ values for the different tests were 0.5-8.0 and 0.2-8.1 mg/L for C₁₂ and C₁₃, respectively. Dodecyl LAS; average chain length C_{11.8} (CAS #25155-30-3); and Tridecyl LAS, average chain length C_{13.3}(CAS #26248-24-8). A concentration-effect relationship was found. Suspended solids were not measured. The wide range of EC₅₀ values is in part due to seasonal differences in temperature and community dynamics.
Reliability: (k) Type: Methods: Results: Substance: Remarks: Reference:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC₅₀ values were 3.4 and 1.9 mg/L for C₁₂ and C₁₃, respectively. The ranges of EC₅₀ values for the different tests were 0.5-8.0 and 0.2-8.1 mg/L for C₁₂ and C₁₃, respectively. Dodecyl LAS; average chain length C_{11.8} (CAS #25155-30-3); and Tridecyl LAS, average chain length C_{13.3} (CAS #26248-24-8). A concentration-effect relationship was found. Suspended solids were not measured. The wide range of EC₅₀ values is in part due to seasonal differences in temperature and community dynamics. Lewis, M.A. and Hamm, B.G. 1986. Environmental modification of the
Reliability: (k) Type: Methods: Results: Substance: Remarks: Reference:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC₅₀ values were 3.4 and 1.9 mg/L for C₁₂ and C₁₃, respectively. The ranges of EC₅₀ values for the different tests were 0.5-8.0 and 0.2-8.1 mg/L for C₁₂ and C₁₃, respectively. Dodecyl LAS; average chain length C_{11.8} (CAS #25155-30-3); and Tridecyl LAS, average chain length C_{13.3} (CAS #26248-24-8). A concentration-effect relationship was found. Suspended solids were not measured. The wide range of EC₅₀ values is in part due to seasonal differences in temperature and community dynamics. Lewis, M.A. and Hamm, B.G. 1986. Environmental modification of the photosynthetic response of lake plankton to surfactants and significance to
Reliability: (k) Type: Methods: Results: Substance: Remarks: Reference:	2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC ₅₀ values were 3.4 and 1.9 mg/L for C ₁₂ and C ₁₃ , respectively. The ranges of EC ₅₀ values for the different tests were 0.5-8.0 and 0.2-8.1 mg/L for C ₁₂ and C ₁₃ , respectively. Dodecyl LAS; average chain length C _{11.8} (CAS #25155-30-3); and Tridecyl LAS, average chain length C _{13.3} (CAS #26248-24-8). A concentration-effect relationship was found. Suspended solids were not measured. The wide range of EC ₅₀ values is in part due to seasonal differences in temperature and community dynamics. Lewis, M.A. and Hamm, B.G. 1986. Environmental modification of the photosynthetic response of lake plankton to surfactants and significance to a laboratory-field comparison. Water. Res. 20:1575-1582.
Reliability: (k) Type: Methods: Results: Substance: Remarks: Reference: Reliability:	 2 Valid with restrictions Laboratory bottles/lake exposures Species or ecosystem studied: Bottles (300 ml) filled with lake water were used as the test systems. Nine concentrations were tested in triplicate. Once a month the bottles were suspended in a lake at 1 m depth for three hours. The experiment was repeated for six months. Effects monitored: photosynthetic response of phytoplankton was determined. Chemical analysis: Concentrations were measured. Mean EC₅₀ values were 3.4 and 1.9 mg/L for C₁₂ and C₁₃, respectively. The ranges of EC₅₀ values for the different tests were 0.5-8.0 and 0.2-8.1 mg/L for C₁₂ and C₁₃, respectively. Dodecyl LAS; average chain length C_{11.8} (CAS #25155-30-3); and Tridecyl LAS, average chain length C_{13.3} (CAS #26248-24-8). A concentration-effect relationship was found. Suspended solids were not measured. The wide range of EC₅₀ values is in part due to seasonal differences in temperature and community dynamics. Lewis, M.A. and Hamm, B.G. 1986. Environmental modification of the photosynthetic response of lake plankton to surfactants and significance to a laboratory-field comparison. Water. Res. 20:1575-1582. 2 Valid with restrictions

4.8 BIOTRANSFORMATION AND KINETICS

(a) Type:

Animal []; Aquatic [X]; Plant []; Terrestrial []; Other []

August 11, 2005

Methods:	In a flow-through system a 21 day uptake and 14 day elimination experiment was conducted with <i>Lepomis macrochirus</i> . The LSC-measured exposure concentration was 0.5 mg/L (1.45 uM). Flow-through; water renewal rate: 20 renewals per day; hardness as $CaCO_3$ 35 mg/L; pH 7.1; water/fish ratio: 0.04 L/g.
Results:	k_1/k_2 concentration factors were for muscle 36, liver 171, blood 237, carcass 64, gall bladder 5224, gill and viscera 282 (on wet weight basis).
	The value for the liver is double $(0.210.26 \text{ d-}\text{D})$ in an ussues out the river.
	indicates biotransformation in the liver. The value of k_1 in the gall bladder (1461 L/kg/d) is at least 16 times higher than those in the other tissues (0
	82 L/kg/d).
	t95 in the different tissues range between 150 and 300.
Test Substance No. alla	No information on metabolism was given.
Test Substance.ma-arky	18.5%) radiolabeled material (¹⁴ C uniformly labelled benzene ring) is spiked with unlabelled LAS (identical homologue composition), spiking ratio 4:1 (unlabeled: ¹⁴ C labeled)
Remarks:	Whole body concentration factors are reliable. Steady state attained
Reference:	within 24 h. Kimerle R A Macek K I Sleight B H and Burrows M E 1981
Reference.	Bioconcentration of linear alkylbenzene sulfonates (LAS) in bluegill
	(Lepomis macrochirus). Water. Res. 15:251-256.
Reliability:	2 Valid with restrictions
(b)	
Туре:	Animal []; Aquatic [X]; Plant []; Terrestrial []; Other []
Methods:	Fathead minnows (<i>Pimephales promelas</i>) were exposed to LAS in a flow-through system according to OECD guideline 305E.
Results:	Steady state uptake was achieved by 96-h of exposure. Uptake constants
	(k_1) range from 4.3 to 642.2 L/kg/day with C_{11} and C_{13} having the lowest and highest, respectively. The elimination rate constants (k_2) range from 0.5 and 1.5 days. k_1 was dependent on hydrophobicity and alkyl chain length. k_2 did not vary with hydrophobicity.
Reference:	Tolls, J., Haller, M., De Graaf, I., Thijssen, M.A.T.C., and Sijm, D.T.H.M. 1997. Bioconcentration of LAS: Experimental determination and
D -1:-1:1:4	extrapolation to environmental mixtures. 31:3426-3431.
Reliability:	2 valid with restrictions
(c)	
Type:	Animal []; Aquatic [X]; Plant []; Terrestrial []; Other []
Method:	In a flow-through system a 14 day uptake experiment was conducted with fish (<i>Pimenhales promelas</i>). Two concentrations of 0 100 and 0 135 mg/L
	(0.3 and 0.4 uM) were tested resulting in concentration factors. Tissue extracts of the fish exposed to LAS were analysed by desulfonation-GC. Flow-through; water renewal rate: 3-4 renewals per day; no feeding; hardness 250 mg/L; well water. Chemical analyses by LSC.
Kesults:	On the basis of the concentration in fish tissues (wet weight) and the two concentrations in water concentration factors in muscle were 4 and 3, and in the gall bladder 13,700 and 7,500. It remains unclear whether the observed variation of the concentration factors indicates a concentration dependence of bioaccumulation. The results indicate metabolic

	transformation, sir for all the radioact for by parent LAS <1%. The autho	the parent compound ivity in the fish. Percoson in muscle 50-70%, of ors report clearance of	and radioactivity of centages of radioa other organs 50-8 of "substantially	could not account activity accounted 80%, gall bladder all ¹⁴ C activity"
Test Substance Lines	within 3 days.	C uniformly ¹⁴ C lob	allad banzana ring	a 2 phonyl
Test Substance.Linea	isomer content: 1	\mathcal{L}_{12} , unitorinity C-rabe	eneu benzene ring	g, 2-phenyi-
Remarks [.]	Steady state attain	770. ed within 144 h		
Reference:	Kimerle, R.A., S	wisher, R.D., and S	Schroeder-Comott	to. R.M. 1975.
	Surfactant structu Structure Activity	re and aquatic toxic Correlations in studie	eity. Proc. IJC es on toxicity and	C Symposium of bioconcentration
Reliability:	2 Valid with restri	lisms, pp. 22-35.		
(d)				
Type:	Animal [X] : Aqua	tic []: Plant []: Terre	estrial []: Other [[]
Methods:	Fish (<i>Ictalurus pi</i> gavage, gavage o injection. Amou elimination path metabolism cham twice per day; 1 g	<i>inctatus</i> 250-450 g) f food impregnated v nt dosed: 425 ug ways were investi ber operated in a sta of food, no feeding of	were dosed with with LAS, and b (1.22 umole). gated. No aquatic mode; water of the fish dosed b	LAS via liquid by intraperitoneal Metabolism and leous exposure; was exchanged by liquid gavage.
	Chemical analysis	via LSC.		
Results:	Percentage elimina 24 exposure period	ated from the differer 1:	nt tissues 48 h aft	ter the end of the
	Percent Eliminated: Gavage		:	
			age	
		i.p. injection	Food	Fluid
	Total	42	68	71
	Gills	4	49	33
	Urine	26	7	11
	Faeces+ Skin	12	12	27
	CO	<1	~1	

Test substance.	Linear LAS, chain length C_{12} , uniformity isomer distribution not specified.
Remarks:	Elimination pathways for the three modes of dosing differed. As a
	considerable fraction of radiolabel administered via gavage is excreted via
	the gills it can be concluded that:
	a) LAS is resorbed readily in the GI-tract.
	b) The compounds excreted via the gills (LAS or its metabolites) are able
	to pass the gill membrane.
Reference:	Schmidt, E.J. and Kimerle, R.A. 1981. New design and use of a fish
	metabolism chamber. In: Branson, D.R. and Dickson, K.L. (eds.).
	Aquatic Toxicology and Hazard Assessment: Fourth Conference, ASTM
	STP 737, 436-448.
Reliability:	2 Valid with restrictions
(e)	
Туре:	Animal []; Aquatic [X]; Plant []; Terrestrial []; Other []
Method:	Fish (Cyprinus carpio 34.6 g) were exposed to combinations of LAS,

	polyoxyethylene and sorbitan monooleate to assess the influence of these
	substances on the uptake of LAS. Exposure period was 3 h. Exposure
	concentration was 1 x 10 ⁻⁵ M LAS. LSC was used for tissue specific
	analysis, HPLC was used for measurement of gill adsorption.
	Dechlorinated tap water, filtered over active carbon; hardness 63 mg/L
	CaCO3; water/fish ratio: 0.14 g/L; no feeding during experiment.
Results:	Concentration factors for specific tissues (measured by LSC) were for
	blood 4.2, hepatopancreas 4.0, spleen 1.0, kidney 3.3, heart 1.7, brain 0.6,
	muscles 0.2, gill 11, gall bladder 21. Adsorption of LAS to gills
	(Cgill/Cwater), measured by HPLC, isomer specific: 2-phenyl 16; 3-
	phenyl 5.4; 4-phenyl, 2.6; 5- and 6-phenyl 1.9.
	C_{12} -LAS associated radiolabel is taken up by gills rapidly. It reaches the
	highest body level in the gall bladder after only three hours. The
	adsorption to the gills is related to the phenyl-substitution of the alkane.
	The closer the benzenesulfonate-group is attached to the terminal carbon
	atom of the alkyl chain, the higher the adsorption to the gills. As the gills
	are an important organ in the uptake of xenobiotic compounds, it seems
	reasonable to expect that those isomers which sorb strongly to the gills
	will also be taken up preferentially.
Test substance:	Labelled linear LAS, isomer distribution not specified. (CAS #25155-30-
	3)
Remarks:	No whole body concentration factors.
Reference:	Toshima, S., Moriya, T., and Yoshimura, K. 1992. Effects of
	polyoxyethylene (20) sorbitan monooleate on the acute toxicity of linear
	alkylbenzenesulfonate (C ₁₂ -LAS) to fish. Ecotox. Environ. Saf. 24:26-36.
Reliability:	2 Valid with restrictions

4.9 ADDITIONAL REMARKS

(a)

Remarks:

Pre-1993 published data and company owned aquatic toxicity test data are collected in a common data base (BKH, 1993). Statistical analysis showed:

-After removal of outliners, the dataset contains 586 records covering 93 species. Algae, crustaceans and fish together make 68% of the 93 species. Dominating species (genera) are: *Scenedesmus, Selenastrum, Daphnia, Gammarus, Lepomis, Pimephales and Carassius* (71% of the 586 records). 34 of the 93 species are marine species.

-LAS does not have a specific mode of action for different species. The variability in the sensitivity between species is comparable to the variability within a species.

-The acute to chronic ratio is approximately a factor 5.

-The mean LC_{50} of all species is 5.5 mg/L.

-The mean NOEC (chronic) of all species is 0.8 mg/L.

-A quantitative structure activity relationship for chain length was determined for fish and crustaceans, longer chain lengths corresponding to higher toxicity. The bioavailability of adsorbed LAS molecules for aquatic organisms as midge larvae, daphnids and fish is assumed to be low, because observed toxicity thresholds in the presence of adsorbing material correspond to the calculated concentration of the fraction LAS

Reference:	 dissolved and the toxicity data for the completely dissolved substance (Pittinger et al., 1989). 1) BKH. 1993. The use of existing toxicity data for estimation of the Maximum Tolerable Environmental Concentration of Linear Alkyl Benzene Sulfonate, Part I: Main report; Part II: Data base. Study carried out for ECOSOL, BKH Consulting Engineers, Delft, NL. 2) Hand, V.C., Rapaport, R.A., Pittinger, C.A. 1990. First validation of a model for the adsorption of linear alkylbenzene sulfonate to sediment and comparison to chronic effects data. Chemosphere 21(6):741-750. 3) Pittinger, C.A., Woltering, D.M., and Masters, J.A. 1989. Bioavailability of sediment sorbed and aqueous surfactants to Chironomus riparius (midge). Environm. Toxicol. Chem. 8:1023-1033.
Reliability:	4 Not assignable
(b)	
Results:	displayed any estrogenic effects
Remarks:	A recombinant yeast estrogen screen using <i>Saccharomycea cerevisiae</i> was employed to determine the potential estrogenic activity of LAS and its degradation products
Reference:	Routledge, E.J. and Sumpter, J.P. 1996. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ. Toxicol. Chem. 15:241-248.
Reliability:	2 Valid with restrictions
(c)	
Type:	Endocrine Disruption
Results:	In the yeast screen, no statistical differences in absorbance were induced in any concentration of either of the three substances. In the hepatocyte assay, no increase in the concentration of Vg over the concentration of the controls was observed for LAS or any other three test substances. Results of both assays indicate that no estrogenic effects occurred after exposure to LAS or two of its biodegradation intermediates (SPC5 and SPC11).
Method:	LAS, SPC5, or SPC11 were prepared in sterile distilled water and added to the culture media. Two <i>in vitro</i> screening assays for measurement of estrogenic activity were used: 1) the ER assay, with the recombinant yeast screen, and 2) the vitellogenin assay, with hepatocytes. ER was used as the positive control. Serial dilutions of the test compounds were used, with the maximum concentrations used in the hepatocytes assay were 150 μ M (50 mg/L) for LAS, 25 μ M (7.4 mg/L) for SPC5, and 200 μ M (72.8 mg/L) for SPC11.
Test Substance:1) LAS	-C ₁₁ , 47% a.i., supplied by Petroquimica Espanola S.A.
	2) Sulfophenylcarboxylic acids (SPC5 and SPC11) (formed from successive evidation of terminal methyl groups on the alleyl chain)
Reference:	Navas, J.M., Gonzalez-Mazo, E., Wenzel, A., Gomez-Parra, A., and Segner, H. 1999. Linear alkylbenzene sulfonates and intermediate products from their degradation are not estrogenic. Marine Pollution
Reliability:	2 Valid with restrictions
(d)	

Results:	The final predicted no-effect concentration (PNEC) for $C_{11.6}$ LAS was 250 μ g/L based on a single species PNEC of 320 μ g/L and the range of field NOECs of 250-500 μ g/L. All data values are expressed as dissolved concentrations
Method:	Predicted no-effect concentrations (PNECs) were derived for LAS and three other surfactants using three stages in an aquatic effects assessment. In the Initial stage, assessment factors are applied to available short-term toxicity data. In the Refined stage, statistical extrapolation based on long- term (i.e., chronic) toxicity data are employed. In the Comprehensive stage of effects assessment, a wide variety of laboratory and field model ecosystem studies are incorporated into the analysis. To determine the PNEC for LAS, all data types were compiled and evaluated. Since toxicity is related to carbon chain length, all data were normalized to LAS with a mean carbon chain length of 11.6, the structure typically present in the environment based on the monitoring study described by Matthijs et al. 1999.
Remarks:	For LAS, the predicted environmental concentrations (PECs) in the environment are about 50 to 100 times lower than the PNECs. This PNEC determination is part of an extensive monitoring program executed jointly by the Dutch Soap Association (NVZ) and the Dutch Ministry of Housing, Spatial Planning and the Environment (VROM).
Reference:	van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J., Feijtel, T.C.J., and Belanger, S.E. 1999. Predicted no-effect concentrations and risk characterization of four surfactants: Linear alkylbenzene sulfonate, alcohol ethoxylates, alcohol ethoxylated sulfates, and soap. Environmental Toxicology and Chemistry 18:2653-2663.
Reliability:	2 Valid with restrictions
(e) Results:	A realistic worst-case estimation of the LAS concentration in sludge- amended soil is predicted to be 7 mg/kg dry weight, which is compared to the PNEC of 4.6 mg/kg. The LAS concentration will drop to a level below the PNEC within 6 to 24 days after sludge application, depending on the degradation rate of LAS.
Methods:	LAS can be found in high concentrations in sewage sludge and may enter the soil compartment as a result of sludge application. To evaluate the effects and risk to soil organisms, a probabilistic (log-normal) distribution model was used to predict a no effect concentration (PNEC) for soil fauna, flora, and a combination of these. By extrapolation, the method determines a lower statistical tolerance limit. The preferred inputs to the current model are EC ₁₀ data from laboratory studies. By use of the log- normal distribution, a concentration (K _p) is found, for which the EC ₁₀ or NOEC values for 95% of all species in the community are greater. The value of K _p is used as the estimate of the PNEC. The soil concentration after sludge application was predicted by a number of scenarios and used as the predicted environmental concentration (PEC) in the risk characterization and calculation of risk quotients (RQ = PEC/PNEC). A LAS concentration of 4.6 mg/kg was used as the current best estimate of PNEC in all RQ calculations. The exposure scenarios included three levels of LAS contamination (530, 2,600 and 16,100 mg/kg), three half- lives (10, 25 and 40 days) and five different sludge loads (2, 4, 6, 8 and 10 t/ha).

Remarks:	Even in the most extreme scenarios, the level of LAS is expected to be far
	below the estimated PNEC one year after application.
Test Substance:LAS (va	arious, based on each study used)
Reference:	Jensen, J., Lokke, H., Holmstrup, M., Krogh, P.H., and Elsgaard, L. 2001.
	Effects and risk assessment of linear alkylbenzene sulfonates in
	agricultural soil. 5. Probabilistic risk assessment of linear alkylbenzene
	sulfonates in sludge-amended soils. Environmental Toxicology and
	Chemistry 20:1690-1697.
Reliability:	2 Valid with restrictions

5. <u>TOXICITY</u>

5.1 ACUTE TOXICITY

5.1.1 ACUTE ORAL TOXICITY

(a) (Kat)	
Type:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	rat
Value:	1080 mg/kg bw
Method:	OECD Guide-line 401 "Acute Oral Toxicity" 1981. Five male and five female rats were given LAS doses of 1075, 1220, 1360, 1710 or a control by gavage. Body weight and other signs were measured on days 7 and 14. Temperature was maintained at $20^+/-1^\circ$ C with a 12 hr light-dark cycle. Animals were observed for 14 days after dosing.
GLP:	Yes [] No [X] ? []
Test substance:	Marlon A 386 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = $C_{11.6}$; Activity: 86%
Remarks:	Symptoms beginning about 30 minutes past application included diarrhea, squatting attitude, breathing difficulties, nose bleeding, ataxia, and lethargy. These symptoms had disappeared in surviving animals by 120 hours. Virtually all animals died in doses of 1220 mg/kg and above. Note that all doses are corrected for 86% activity. The original doses were 1250, 1415, 1580 and 1990 mg/kg.
Reference:	Murmann, P. 1984a. Akute orale Toxizitat von Marlon A 386 fur Ratten. Huels Report No. 0191.
Reliability:	2 Valid with restrictions
(b)	
Type:	$I \cap [1 \cap I \cap $
rype.	LD_0 [], LD_{100} [], LD_{50} [A], LDL_0 [], Other []
Species/strain:	LD_0 [], LD_{100} [], LD_{50} [A], LDL_0 [], Other [] rat
Species/strain: Value:	LD_0 [], LD_{100} [], LD_{50} [A], LDL_0 [], Other [] rat 1630 mg/kg bw
Species/strain: Value: Method:	 LD₀ [], LD₁₀₀ [], LD₅₀ [A], LDL₀ [], Other [] rat 1630 mg/kg bw OECD Guide-line 401 "Acute Oral Toxicity" 1981. Five male and five female rats were given LAS doses of 1260, 1580, 1785, and 1990 or a control by gavage. Body weight and other signs were measured on days 7 and 14. Temperature was maintained at 20⁺/-1°C with a 12 hr light-dark cycle. Animals were observed for 14 days after dosing.
Species/strain: Value: Method: GLP:	LD_0 [], LD_{100} [], LD_{50} [X], LDL_0 [], Other [] rat 1630 mg/kg bw OECD Guide-line 401 "Acute Oral Toxicity" 1981. Five male and five female rats were given LAS doses of 1260, 1580, 1785, and 1990 or a control by gavage. Body weight and other signs were measured on days 7 and 14. Temperature was maintained at 20 ⁺ /-1°C with a 12 hr light-dark cycle. Animals were observed for 14 days after dosing. Yes [] No [X] ? []
Species/strain: Value: Method: GLP: Test substance:	$\begin{array}{l} \text{LD}_{0} \left[\text{, } \text{LD}_{100} \left[\text{, } \text{LD}_{50} \left[\text{, } \text{LD}_{0} \left[\text{, } \text{Ottel} \left[\text{, } \text{f} \text{f} $
Species/strain: Value: Method: GLP: Test substance: Remarks:	LD ₀ [], LD ₁₀₀ [], LD ₅₀ [X], LDL ₀ [], Ottel [] rat 1630 mg/kg bw OECD Guide-line 401 "Acute Oral Toxicity" 1981. Five male and five female rats were given LAS doses of 1260, 1580, 1785, and 1990 or a control by gavage. Body weight and other signs were measured on days 7 and 14. Temperature was maintained at 20 ⁺ /-1°C with a 12 hr light-dark cycle. Animals were observed for 14 days after dosing. Yes [] No [X] ? [] Marlon A 350 (CAS #68411-30-3) C ₁₀₋₁₃ LAS, average alkyl chain length = C _{11.6} ; Activity: 50% Symptoms beginning about 1-4 hours past application included diarrhea, squatting attitude, breathing difficulties, nose bleeding, ataxia, and lethargy. The symptoms in the lower doses disappeared with 24 to 48 hours. Symptoms disappeared in the 1785 mg/kg dose and higher within 8 days. Virtually all animals died in doses of 1785 mg/kg and above. Note that all doses are corrected for 50% activity. The original doses were 2510, 3160, 3570 and 3980 mg/kg.
Species/strain: Value: Method: GLP: Test substance: Remarks: Reference:	LD ₀ [], LD ₁₀ [], LD ₅₀ [X], LDL ₀ [], Ottel [] rat 1630 mg/kg bw OECD Guide-line 401 "Acute Oral Toxicity" 1981. Five male and five female rats were given LAS doses of 1260, 1580, 1785, and 1990 or a control by gavage. Body weight and other signs were measured on days 7 and 14. Temperature was maintained at 20 ⁺ /-1°C with a 12 hr light-dark cycle. Animals were observed for 14 days after dosing. Yes [] No [X] ? [] Marlon A 350 (CAS #68411-30-3) C ₁₀₋₁₃ LAS, average alkyl chain length = C _{11.6} ; Activity: 50% Symptoms beginning about 1-4 hours past application included diarrhea, squatting attitude, breathing difficulties, nose bleeding, ataxia, and lethargy. The symptoms in the lower doses disappeared with 24 to 48 hours. Symptoms disappeared in the 1785 mg/kg dose and higher within 8 days. Virtually all animals died in doses of 1785 mg/kg and above. Note that all doses are corrected for 50% activity. The original doses were 2510, 3160, 3570 and 3980 mg/kg. Murmann, P. 1984c. Akute orale Toxizitat von Marlon A 350 fur Ratten. Huels Report No. 209.

(c)	
Type.	LD_0 [] LD_{100} [] LD_{50} [X] LDL_0 [] Other []
Species/strain	rat
Value:	1410 mg/kg hu
	OFCD Critical line 401 "A costs Oral Terrisited" 1001 First male and free
Method:	female rats were given LAS doses of 1190, 1500 and 1890 or a control by gavage. Body weight and other signs were measured on days 7 and 14. Temperature was maintained at $20^{+}/-1^{\circ}$ C with a 12 hr light-dark cycle. Animals were observed for 14 days after dosing.
GLP:	Yes [] No [X] ? []
Test substance:	Marlon A 330 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = $C_{11.6}$; Activity: 30%.
Remarks:	Symptoms beginning about 90 minutes past application included diarrhea, squatting attitude, breathing difficulties, nose bleeding, ataxia, and lethargy. These symptoms had disappeared in surviving animals by 72 hours. Virtually all animals died in doses of 1500 mg/kg and above. Note that all doses are corrected for 30% activity. The original doses were 3980, 5010 and 6310 mg/kg
Reference:	Murmann, P. 1984a. Akute orale Toxizitat von Marlon A 330 fur Ratten. Huels Report No. 0186
Reliability:	2 Valid with restrictions
(d)	
Туре:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	rat
Value:	LD ₅₀ for male animals: 1460 mg/kg
	LD_{50} for female animals: 1470 mg/kg
Method:	Male and female rats were given a single dose of LAS by gavage and observed for mortality.
GLP:	Yes [] No [X] ? []
Test substance:	C ₁₀₋₁₃ LAS, sodium salt (CAS #68411-30-3)
	$ 0.1%, C_{10} 10.1%, C_{11} 33.7%, C_{12} 31%, C_{13} 25.1%.; average alkyl chain length = C_{11,7}; activity: 99.5%$
Remarks [.]	Information as reported in IPCS document
Reference:	Ito R Kawamura H Chang HS Kudo K Kajiwara S Tojda S
	Seki, Y., Hashimoto, M., and Fukushima, A. 1978. Acute, subacute and chronic toxicity of magnesium linear alkylbenzene sulfonate (LAS- Mg). J. Med. Soc. Toho, Japan. 25 (5-6):850-875 (in Japanese). Referenced in IPCS, Environmental Health Criteria 169. Linear Alkylbenzene Sulfonates and Related Compounds, WHO.
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document, therefore it is considered to be reliable.
(e)	
Type:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	Rat, CFY (Sprague-Dawley origin); male and female
Value:	1980 mg/kg bw
Method:	OECD Guideline 401. Five male and five female rats were given single doses by gavage at 1500, 2350 and 3760 mg/kg bw. Rats were housed in cages grouped by sex and given standard laboratory diet and water <i>ad</i>

	<i>libitum</i> . Mean daily temperature was maintained at 21-22°C at a mean relative humidity of 56%. Lighting was on a 12 hrs dark and 12 hrs light photoperiod. Animals were observed for 14 days after dosing.
GLP:	Yes [X] No [] ? []
Test substance:	Alkylbenzene sulfonate, sodium salt (designated as P-500 N-Na). Activity 47%. Average alkyl chain length = $C_{11,2}$ Clear yellow liquid.
Remarks:	Four rats from each of the two lowest concentrations and all rats from the highest concentration died. All deaths occurred between 6 and 23 hours after dosing. Signs of reaction to treatment included pilo-erection, hunched posture, abnormal gait (waddling), lethargy, decreased respiratory rate, ptosis, pallor of the extremities, and diarrhea. All surviving animals appeared to recover completely by day 4. Autopsy of rats that died revealed isolated cases of pallor of the kidneys or spleen. Terminal necropsy findings for survivors were normal. Note that all doses are corrected for 47% activity. The original doses were 3200, 5000, and 8000 mg/kg.
Reference:	Huntingdon Research Cener Report. No. 86546D/PEQ 7/AC.
(f)	I valid without restriction
(I) T	
Type:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	Sprague-Dawley strain albino male and female rats
Value:	1320 mg/kg (lower limit: 1220 mg/kg; upper limit: 1430 mg/kg)
Method:	Acute Oral Minimal Lethal Dose Test
CLD	The test substance was applied as a 20% aqueous solution by stomach tube to Sprague-Dawley strain albino male and female rats. After the approximate LD_{50} was determined, groups of male and female rats were fed in increasing doses at increments of 0.1 fractional log intervals at three levels (1000, 1260 and 1580 mg/kg) designed to blanket the toxicity range thereby supplying data for calculation of the LD_{50} which was performed according to the method of E.J. de Beer. Observations of toxic signs were recorded and the viscera of the test animals were examined macroscopically.
GLP:	Yes NO X ?]
Test substance:	Sodium sulfonate of linear alkylbenzene (Alkylate-225); $C_9 1\%$; $C_{10} 7\%$, $C_{11} 25\%$, $C_{12} 48\%$, $C_{13} 19\%$, $C_{14} 1\%$; average alkyl chain length = $C_{11.9}$.
Remarks:	The compound was classified as mildly toxic by oral ingestion in male and female rats. All rats at 1000 mg/kg and 4 of 5 rats at 1260 mg/kg survived. Survival time was one to two days for rats that died at 1580 mg/kg. The toxic signs included reduced appetite and activity (one to two days in survivors), diarrhoea, increasing weakness, collapse, and death. The autopsy revealed hemorrhagic lungs, liver discoloration, and acute gastrointestinal inflammation. Surviving animals were sacrificed seven days after dosing. In these animals the vircera appeared normal by macroscopic examination.
Reference:	Monsanto Company. 1971. Linear alkylbenzene sodium sulfonate – Alkylate 225 Lot CC 6450 – Acute toxicity screen. Project No. Y-71-119.
Reliability:	2 Valid with restrictions

(g)

Type:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	Sprague-Dawley strain albino male and female rats
Value:	1430 mg/kg (lower limit: 1300 mg/kg; upper limit: 1570 mg/kg)
Method:	Acute Oral Minimal Lethal Dose Test The test substance was applied as a 100/ assessed solution by stomach
	The test substance was applied as a 10% aqueous solution by stomach
	tube to Sprague-Dawley strain albino male and lemale rats. After the
	approximate LD_{50} was determined, groups of male and female rats were fad in increasing decay at increments of 0.1 fractional log intervals at four
	levels (1000, 1260, 1580 and 2000 mg/kg) designed to blanket the toxicity
	range thereby supplying data for calculation of the LD, which was
	range increase supplying data for calculation of the LD_{50} which was performed according to the method of E I de Beer. Observations of toxic
	signs were recorded and the viscera of the test animals were examined
	macrosconically
GI P·	Ves [] No [X] ? []
Test substance.	Sodium sulfonate of linear alkylbenzene (Alkylate-215): Co 1% Coo 16%
i est substance.	C_{11} 43%, C_{12} 40%, C_{13} 1%, C_{14} <1%; average alkyl chain length = C_{11} 35.
Remarks:	The compound was classified as mildly toxic by oral ingestion in male and
	female rats. All rats survived at 1000 mg/kg. Three of 5 and 2 of 5
	survived 1260 and 1580, respectively. Survival time was sixteen hours to
	two days in the rats that died. The toxic signs included reduced appetite
	and activity (two to three days in survivors), increasing weakness, slight
	tremors, collapse, and death. The autopsy revealed lung and liver
	hyperaemia and gastrointestinal inflammation. Surviving animals were
	sacrificed seven days after dosing. In these animals the vircera appeared
	normal by macroscopic examination.
Reference:	Monsanto Company. 1972a. Linear alkylbenzene sodium sulfonate –
	Alkylate 215 Lot CC 67/2S – Acute toxicity screen. Project No. Y-72-
	2/4. Unpublished report.
Reliability:	2 valid with restrictions
(h)	
(II) Type:	I Do [] · I Dioo [] · I D co [X] · I DL o [] · Other []
Species/strain	Sprague-Dawley strain albino male and female rats
Value.	1360 mg/kg (lower limit: 1240 mg/kg; unner limit: 1500 mg/kg)
Method:	Acute Oral Minimal Lethal Dose Test
	The test substance was applied as a 10% aqueous solution by stomach
	tube to Sprague-Dawley strain albino male and female rats. After the
	approximate LD_{50} was determined. groups of male and female rats were
	fed in increasing doses at increments of 0.1 fractional log intervals at four
	levels (1000, 1260, 1580 and 2000 mg/kg) designed to blanket the toxicity
	range thereby supplying data for calculation of the LD ₅₀ which was
	performed according to the method of E.J. de Beer. Observations of toxic
	signs were recorded and the viscera of the test animals were examined
	macroscopically
GLP:	macroscopicany.
	Yes [] No [X] ? []
Test substance:	Yes [] No [X] ? [] Sodium sulfonate of linear alkylbenzene (Alkylate-222L); average alkyl
Test substance:	Yes [] No [X] ? [] Sodium sulfonate of linear alkylbenzene (Alkylate-222L); average alkyl chain length = $C_{11.5}$
Test substance: Remarks:	Yes [] No [X] ? [] Sodium sulfonate of linear alkylbenzene (Alkylate-222L); average alkyl chain length = $C_{11.5}$ The compound was classified as slightly toxic by oral ingestion in male
Test substance: Remarks:	Yes [] No [X] ? [] Sodium sulfonate of linear alkylbenzene (Alkylate-222L); average alkyl chain length = $C_{11.5}$ The compound was classified as slightly toxic by oral ingestion in male and female rats. Survival time was sixteen hours to three days in the rats
Test substance: Remarks:	Yes [] No [X] ? [] Sodium sulfonate of linear alkylbenzene (Alkylate-222L); average alkyl chain length = $C_{11.5}$ The compound was classified as slightly toxic by oral ingestion in male and female rats. Survival time was sixteen hours to three days in the rats that died. The toxic signs included reduced appetite and activity (one to three days in survivors) increasing weathers and dott. The
Test substance: Remarks:	Yes [] No [X] ? [] Sodium sulfonate of linear alkylbenzene (Alkylate-222L); average alkyl chain length = $C_{11.5}$ The compound was classified as slightly toxic by oral ingestion in male and female rats. Survival time was sixteen hours to three days in the rats that died. The toxic signs included reduced appetite and activity (one to three days in survivors), increasing weakness, collapse, and death. The autopsy revealed lung and liver hypersemia and gastrointesting

Reference: Reliability:	inflammation. Surviving animals were sacrificed seven days after dosing. In these animals the vircera appeared normal by macroscopic examination. Monsanto Company. 1972b. Linear alkylbenzene sodium sulfonate – Alkylate 222L Lot CC 6773S – Acute toxicity screen. Project No. Y-72- 275. Unpublished report. 2 Valid with restrictions
(i) (Mouse)	
Туре:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	mouse
Value:	LD ₅₀ male animals: 2160 mg/kg
	LD_{50} female animals: 2250 mg/kg
Method:	Male and female mice were given a single dose of LAS and observed for mortality.
GLP:	Yes [] No [X] ? []
Test substance:	C ₁₀₋₁₃ LAS, sodium salt (CAS #68411-30-3).
	$, C_{10} 10.1\%, C_{11} 33.7\%, C_{12} 31\%, C_{13} 25.1\%; average alkyl chain length = C_{11.7}; activity: 99.5%$
Remarks:	Information as cited in IPCS document.
Reference:	Ito, R., Kawamura, H., Chang, H.S., Kudo, K., Kajiwara, S., Toida, S., Seki, Y., Hashimoto, M., and Fukushima, A. 1978. Acute, subacute and chronic toxicity of magnesium linear alkylbenzene sulfonate (LAS-Mg). J. Med. Soc. Toho, Japan. 25 (5-6):850-875 (in Japanese). Referenced in IPCS, Environmental Health Criteria 169. Linear Alkylbenzene Sulfonates and Related Compounds, WHO.
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.

5.1.2 ACUTE INHALATION TOXICITY

Туре:	LC_0 []; LC_{100} []; LC_{50} []; LCL_0 []; Other [X] Approximate lethal concentration (ALC)
Species/strain:	Rat/Male Crl: CD (SD) BR
Exposure time:	single 4-hour period
Value:	310 mg/m ³ of particulate
Method:	Groups of six male 8-week old rats were restrained in perforated, stainless steel cylinders with conical nose pieces. Exposure was nose-only to an aerosol atmosphere for 4 hours. After exposure, rats were returned to their cages and observed for clinical signs for 14 days. Mean measured concentrations in the test chambers were 65, 120, 260, and 310 mg/m ³ .
CL D	Chamber temperature ranged between 25-26°C.
GLP:	Yes [] No [] ? [X]
Test substance:	LAS (CAS #25155-30-0); activity 98%
Remarks:	The ALC is defined as the lowest atmospheric concentration generated that caused death in 1 or more rats either on the day of exposure or within 14 days post exposure. No mortality occurred at concentrations up to 260 mg/m ³ . At 310 mg/m ³ , one rat died during exposure and 2 rats died one day post exposure. The test material is considered moderately toxic by inhalation. However, it is important to note that this laboratory exposure is not representative of the possible LAS exposure during actual use. In

	this study, animals were given high exposures to respirable-sized
	particles (MMAD at 310 mg/m ³ = 2.5 microns). Spray products
	containing LAS are designed to produce large particle sizes. These
	large particles are needed for efficient delivery of the spray to the
	surface being cleaned. This results in particle sizes that are much larger
	than the respirable particle sizes used in testing and therefore would not
	be able to reach far into the lungs where effects could occur. Given this
	lack of relevance to real-world exposure potential, the use of this study
	for risk assessment purposes is limited.
Reference:	Kinney, L.A. 1985. Approximate lethal concentrations (ALCs) by
	inhalation of sodium lauryl sulfate & sodium dodecylbenzene sulfonate.
	Dupont Haskell Laboratory Report No. 474-84.
Reliability:	2 Valid with restrictions

5.1.3 ACUTE DERMAL TOXICITY

(a)	
Type:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species:	Rat, CFY (Sprague-Dawley origin); male and female
Value:	>2000 mg/kg bw
Method:	OECD Guideline 402. Five male and five female rats were exposed to 2000 mg/kg in a limit test. The test substance was applied to clipped intact skin in the dorso-lumbar region and covered with gauze held in place with an impermeable dressing. The dressing was removed after 24 hours and the treated area of the skin washed with warm water and blotted dry. Observations for dermal irritation were made daily for 14 days.
GLP:	Yes [X] No [] ? []
Test substance:	Alkylbenzene sulfonate, sodium salt (designated as P-500 N-Na). activity 47%. Average alkyl chain length = $C_{11,2}$. Yellow, viscous liquid.
Remarks:	There were no deaths or signs of a systemic reaction following a single dermal application at 2000 mg/kg bw. Well defined or slight erythema and slight oedema were observed at all test sites after removal of the occlusive dressing on Day 2. All test sites were entirely covered by scab formation from Day 7. Sloughing from the scabbed skin began at various times between Day 7 and Day 12 and was completed before termination. Low bodyweight gains or loss of body weight were recorded for one male and three females in Day 8. Two of the same females and a third female also showed low bodyweight gain between Days 8 and 15.
Reference:	Kynoch, S.R. 1986b. Acute dermal toxicity to rats of P-500 N-Na. Huntingdon Research Center. Report No. 86718D/PEQ 8/AC.
Reliability:	1 Valid without restriction
(b)	
Type:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	New Zealand white rabbit
Value:	> 200 mg/kg and $< 316 mg/kg$
Method:	Acute Skin Absorption Minimal Lethal Dose Test The test substance was applied as a 30% aqueous solution and the doses of the solution administered were 126, 200, 316, 501, 794, 1260, 2000, 3160 and 5010 mg/kg. The doses were administered to a closely clipped area of intact skin of male and female rabbits (1 animal/dose). The treated areas
1 2005	160

	were covered with plastic strips and the animals were placed in wooden stocks for up to twenty-four hours. After the twenty-four hours the animals were assigned to individual cages. Observations of toxic signs were recorded daily and the viscera of the test animals were examined macrosconically
GLP	Yes $[1]$ No $[X]$? $[1]$
Test substance:	Sodium sulfonate of linear alkylbenzene (Alkylate-225; C ₉ 1%; C ₁₀ 7%, C ₁₁ 25%, C ₁₂ 48%, C ₁₃ 19%, C ₁₄ 1%; average alkyl chain length = C _{11.9})
Remarks:	The test substance was classified as moderately toxic. Animals exposed dermally to 126 and 200 mg/kg survived for the 14 day study duration. Survival time for animals receiving all other doses ranged from two to eight days. The toxic signs included reduced appetite and activity, increasing weakness, collapse and death. The autopsy revealed hemorrhagic lungs, liver discoloration, enlarged gall bladder, and gastrointestinal inflammation. The animals that survived were sacrificed fourteen days after dosing. In these animals the viscera appeared normal by macroscopic examination.
Reference:	Monsanto Company. 1971. Linear alkylbenzene sodium sulfonate – Alkylate 225 Lot CC 6450 – Acute toxicity screen. Project No. Y-71-119. Unpublished report.
Reliability:	4 (insufficient animals per dose of mixed sex, etc.)
(c)	
Type:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	New Zealand white rabbit
Value:	> 631 mg/kg and $< 1000 mg/kg$
Method [.]	Acute Skin Absorption Minimal Lethal Dose Test
GI P.	The test substance was applied as a 20% aqueous solution and the doses of the solution administered were 200, 316, 631, 1000, 1260, 2000 and 3160 mg/kg. The doses were administered to a closely clipped area of intact skin of male and female rabbits (1 animal/dose). The treated areas were covered with plastic strips and the animals were placed in wooden stocks for up to twenty-four hours. After the twenty-four hours the animals were assigned to individual cages. Observations of toxic signs were recorded daily and the viscera of the test animals were examined macroscopically.
Test substance:	Sodium sulfonate of linear alkylbenzene (Alkylate-215; C ₉ 1%, C ₁₀ 16%, C ₁₁ 43%, C ₁₂ 40%, C ₁₃ 1%, C ₁₄ <1%; average alkyl chain length = C ₁₁₃₅)
Remarks:	The test substance was classified as moderately toxic. Survival time ranged from one to two days. The toxic signs included reduced appetite and activity, increasing weakness, collapse and death. The autopsy revealed lung hyperemia, areas of liver discoloration and gastrointestinal inflammation. The animals that survived were sacrificed fourteen days after dosing. In these animals the viscera appeared normal by macroscopic examination
Reference:	Monsanto Company. 1972a. Linear alkylbenzene sodium sulfonate – Alkylate 215 Lot CC 6772S – Acute toxicity screen. Project No. Y-72- 274. Unpublished report.
Reliability:	4 (insufficient animals per dose of mixed sex, etc.)
(d) Type:	I.D., []: I.D., []: I.D., [X]: I.D., []: Other []
- ,p~.	

August 11, 2005

Species/strain:	New Zealand white rabbit
Value:	> 631 mg/kg and < 1000 mg/kg
Method:	Acute Skin Absorption Minimal Lethal Dose Test
	The test substance was applied as a 20% aqueous solution and the doses of
	the solution administered were 200, 398, 631, 1000, 1260, 2000 and 3160
	mg/kg. The doses were administered to a closely clipped area of intact
	skin of male and female rabbits (1 animal/dose). The treated areas were
	covered with plastic strips and the animals were placed in wooden stocks
	for up to twenty-four hours. After the twenty-four hours the animals were
	assigned to individual cages. Observations of toxic signs were recorded
a a	daily and the viscera of the test animals were examined macroscopically.
GLP:	Yes $[]$ No $[X]$? $[]$
Test substance:	Sodium sulfonate of linear alkylbenzene (Alkylate-222L; average alkyl chain length = $C_{11.5}$)
Remarks:	The test substance was classified as moderately toxic. Survival time was
	two days. The toxic signs were reduced appetite and activity, increasing
	weakness, collapse and death. The autopsy revealed lung hyperemia,
	areas of liver discoloration and gastrointestinal inflammation. The
	animals that survived were sacrificed fourteen days after dosing. In these
	animals the viscera appeared normal by macroscopic examination.
Reference:	Monsanto Company. 1972b. Linear alkylbenzene sodium sulfonate –
	Alkylate 222L Lot CC 6773S – Acute toxicity screen. Project No. Y-72-
	275. Unpublished report.
Reliability:	4 (insufficient animals per dose of mixed sex, etc.)

5.1.4 ACUTE TOXICITY, OTHER ROUTES OF ADMINISTRATION

(a)	
Type:	LD_0 []; $LD100$ []; $LD50$ [X]; LDL_0 []; Other []
Species/strain:	rat
Administration:	i.m. []; i.p. []; i.v. []; infusion []; s.c. [X]; other []
Value:	Females = 810 mg/kg ; males = 840 mg/kg bw
Method:	Rats were given subcutaneous injections of LAS
GLP:	Yes [] No [X] ? []
Test substance:	C ₁₀₋₁₃ LAS, sodium salt (CAS #68411-30-3)
	<c<sub>10 0.1%, C₁₀ 10.1%, C₁₁ 33.7%, C₁₂ 31%, C₁₃ 25.1%; average alkyl</c<sub>
	chain length = $C_{11.7}$; activity: 99.5%
Remarks:	Information as cited in IPCS document.
Reference:	Ito, R., Kawamura, H., Chang, H.S., Kudo, K., Kajiwara, S., Toida, S.,
	Seki, Y., Hashimoto, M., and Fukushima, A. 1978. Acute, subacute
	and chronic toxicity of magnesium linear alkylbenzene sulfonate (LAS-
	Mg). J. Med. Soc. Toho, Japan. 25 (5-6):850-875 (in Japanese).
	Referenced in IPCS, Environmental Health Criteria 169. Linear
	Alkylbenzene Sulfonates and Related Compounds.
Reliability:	4 This study is assigned a reliability score of 4 because the original
	report was not available for review. However, the study was evaluated
	by IPCS prior to inclusion in their criteria document.
(b) T	
Type:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	mouse

Administration: Value:	i.m. []; i.p. []; i.v. []; infusion []; s.c. [X]; other [] Females = 1400 mg/kg; males = 1250 mg/kg bw
Method:	Mice were given subcutaneous injections of LAS.
GLP:	Yes [] No [X] ? []
Test substance:	C ₁₀₋₁₃ LAS, sodium salt (CAS #68411-30-3)
	<c<sub>10 0.1%, C₁₀ 10.1%, C₁₁ 33.7 %, C₁₂ 31%, C₁₃ 25.1%; average alkyl</c<sub>
	chain length = $C_{11.7}$; activity: 99.5%
Remarks:	Information as cited in IPCS document.
Reference:	Ito, R., Kawamura, H., Chang, H.S., Kudo, K., Kajiwara, S., Toida, S.,
	Seki, Y., Hashimoto, M., and Fukushima, A. 1978. Acute, subacute and chronic toxicity of magnesium linear alkylbenzene sulfonate (LAS- Mg). J. Med. Soc. Toho, Japan. 25 (5-6):850-875 (in Japanese). Referenced in IPCS, Environmental Health Criteria 169. Linear Alkylbenzene Sulfonates and Related Compounds
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(c)	
Туре:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	rat
Administration:	i.m. []; i.p. []; i.v. [X]; infusion []; s.c. []; other []
Value:	Females = 126 mg/kg; males = 119 mg/kg bw
Method:	Rats were given intravenous injections of LAS.
GLP:	Yes [] No [X] ? []
Test substance:	C_{10-13} LAS, sodium salt (CAS #68411-30-3) < C_{10} 0.1%, C_{10} 10.1%, C_{11} 33.7%, C_{12} 31%, C_{13} 25.1%; average alkyl chain length = $C_{11.7}$; activity: 99.5%
Remarks: Reference:	Information as cited in IPCS document. Ito, R., Kawamura, H., Chang, H.S., Kudo, K., Kajiwara, S., Toida, S., Seki, Y., Hashimoto, M., and Fukushima, A. 1978. Acute, subacute and chronic toxicity of magnesium linear alkylbenzene sulfonate (LAS- Mg). J. Med. Soc. Toho, Japan. 25 (5-6):850-875 (in Japanese). Referenced in IPCS, Environmental Health Criteria 169. Linear
Reliability:	Alkylbenzene Sulfonates and Related Compounds. 4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(d)	
Type:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	mouse
Administration:	i.m. []; i.p. []; i.v. [X]; infusion []; s.c. []; other []
Value:	Females = 298 mg/kg ; males = 207 mg/kg bw
Method:	Mice were given intravenous injections of LAS.
GLP:	Yes [] No [X] ? []
Test substance:	C_{10-13} LAS, sodium salt (CAS #68411-30-3) < C_{10} 0.1%, C_{10} 10.1%, C_{11} 33.7%, C_{12} 31%, C_{13} 25.1%; average alkyl chain length = $C_{11,2}$; activity: 99.5%
Remarks:	Information as cited in IPCS document.
Reference:	Ito, R., Kawamura, H., Chang, H.S., Kudo, K., Kajiwara, S., Toida, S., Seki, Y., Hashimoto, M., and Fukushima, A. 1978. Acute, subacute

	and chronic toxicity of magnesium linear alkylbenzene sulfonate (LAS-
	Mg). J. Med. Soc. Toho, Japan. 25 (5-6):850-875 (in Japanese).
	Referenced in IPCS, Environmental Health Criteria 169. Linear
	Alkylbenzene Sulfonates and Related Compounds.
Reliability.	4 This study is assigned a reliability score of 4 because the original
	report was not available for review However the study was evaluated
	by IPCS prior to inclusion in their criteria document
	by it es prior to inclusion in their effective document.
(e)	
Type:	LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []
Species/strain:	mouse, albino, Harlan strain
Administration:	i.m. []; i.p. []; i.v. [X] ; infusion []; s.c. []; other []
Exposure time:	24 hours
Value:	$105 \text{ mg/kg bw } (C_{12} \text{ LAS}); 115 \text{ mg/kg bw } (C_{10} \text{ LAS})$
Method:	Mice in groups of 10 were given intravenous injections of C_{10} or C_{12} LAS.
GLP:	Yes [] No [X] ? []
Test substance:	C_{12} LAS homologue; C_{10} LAS homologue
Remarks:	Varying doses were given with an increasing increment between doses of
	20% or less.
Reference:	Hopper, S.S., Hulpieu, H.R. and Cole, V.V. 1949. Some toxicological
	properties of surface active agents. J. Am. Pharmacol. Assoc. 38:428-432.
Reliability:	2 Valid with restrictions

5.2 CORROSIVENESS/IRRITATION

5.2.1 SKIN IRRITATION/CORROSION

(a)	
Species:	New Zealand albino rabbits
Results:	Highly corrosive []; Corrosive []; Highly irritating [];
	Irritating []; Moderate irritating []; Slightly irritating [];
	Not irritating []; Moderate to severe irritating [X]
Method:	OECD Guideline 404. A 0.5 ml aliquot of P-500 N-Na was applied under
	a 2.5 cm^2 gauze pad to an approximate 10 cm^2 area of clipped intact skin
	of 3 rabbits. Each treatment site was occluded with an elastic adhesive
	dressing for four hours, after which the dressing was removed and the area
	washed with distilled water. Examination of the treated skin was made
	approximately 30 minutes after removal of the patch and daily through 14
	days. Grading and scoring of the dermal reactions was performed using
	the standard numerical scoring system.
GLP:	Yes [X] No []? []
Test substance:	Alkylbenzene sulfonate, sodium salt (designated as P-500 N-Na). Activity
	47%. Average alkyl chain length = $C_{11,2}$. Clear yellow liquid.
Remarks:	Well defined to moderate skin reactions were observed in all three animals
	following removal of the bandages. Desquamation of the stratum
	corneum was observed in all three animals. The reaction in all three
	animals gradually ameliorated from Days 5, 10 and 11, respectively, and
	had all resolved completely in one animal by Day 12.
Reference:	Liggett, M.P. and Parcell, B.I. 1986a. Irritant effects on rabbit skin of P-
	500 N-Na. Huntingdon Research Center. Report No. 86400D/PEQ 9/SE.
Reliability:	1 Valid without restriction

(b)	
Species/strain:	New Zealand albino rabbits
Results:	Highly corrosive []; Corrosive []; Highly irritating [];
	Irritating [X]; Moderate irritating []; Slightly irritating [];
	Not irritating []
Method:	OFCD Guideline 404 A single dose of 0.5 σ was applied to the clipped
Wiethou.	intact skin of six rabbits and secured with a gauze had covered by an
	intact skill of six fabbits and secured with a gauze pad covered by an
	imperineable covering. The patch was removed after a 4 hour exposure
	and the site washed with water. Animals were examined for signs of
	erytnema and oedema and the responses scored at 60 minutes, 24, 48 and
	/2 hr, and daily as needed up to / days. Skin irritation was scored using
	the standard rating system and averaged.
GLP:	Yes [] No [X] ? []
Test substance:	LAS activity 50%; average alkyl chain length = $C_{11.6}$
Remarks:	Average score after 72 hours were 2.4 and 2.83 for erythema and oedema,
	respectively.
Reference [.]	Biolab SGS 1989a Primary skin irritation Report No T00428/4
Reliability.	2 Valid with restrictions
(c)	
Species/strain:	rabbit
Dogulta:	Highly corrective [1: Corrective [1: Highly irritating [1:
Results.	Inginy conosive [], Conosive [], Inginy initiating [],
	Innating [A], Moderate innating [], Singhuy innating [],
C1 : C :	Not irritating []
Classification:	Highly corrosive (causes severe burns) [];
	Corrosive (causes burns) []; Irritating [X]; Not irritating []
Method:	OECD Guide-line 404 "Acute Dermal Irritation/Corrosion" 1984
GLP:	Yes [X] No []? []
Test substance:	C ₁₀ LAS (CAS #1322-98-1) and C ₁₂ LAS (CAS #25155-30-0).
Remarks:	Reference reports the results of many experiments conducted on LAS and
	other surfactants.
Reference:	Kaestner, W. 1997. Local tolerance (animal tests): mucous membranes
	and skin In Anionic Surfactants Biochemistry Toxicology
	Dermatology 2 nd Edition
P oliphility:	A Not assignable
Reliability.	4 Not assignable
(d)	
(u) Spacios/strain:	rabbit
Degultar	Iduuli Iliahta compaise []). Compaise []). Iliahta imitating []).
Results:	Highly corrosive []; Corrosive []; Highly irritating [];
	Irritating [X]; Moderate irritating []; Slightly irritating [];
	Not irritating []
Classification:	Highly corrosive (causes severe burns) [];
	Corrosive (causes burns) []; Irritating [X]; Not irritating []
Method:	OECD Guide-line 404 "Acute Dermal Irritation/Corrosion" 1981. Three
	male and female rabbits received 0.5 ml of 50% active material to the
	shaved intact skin.
GLP:	Yes [] No [X] ? []
Test substance	Marlon A 350 (CAS $\#$ 68411-30-3) C _{10.12} LAS average alkyl chain length
	$= C_{116}$ activity: 50%
Remarks [.]	Mean irritation index: 51 out of 8 Individual scores: edema: 2.28
i viliui Ko.	eruthema: 3.0
	orymonia. 5.0

Reference:	Murmann, P. 1983a. Prufung der akuten Hautreizwirkung von Marlon A 350. Huels Report No. 0171.
Reliability:	2 Valid with restrictions
(e)	
Species/strain:	New Zealand albino rabbits
Results:	Highly corrosive []; Corrosive []; Highly irritating []; Irritating []; Moderately irritating [X]; Slightly irritating []; Not irritating []
Method:	OECD Guideline 404. A single dose of 0.5 g was applied to the clipped intact skin of six rabbits and secured with a gauze pad covered by an impermeable covering. The patch is removed after a 4 hour exposure and the site washed with water. A second site with the skin abraded received the same treatment. Animals are examined for signs of erythema and oedema and the responses scored at 60 minutes, 24, 48 and 72 hr, and daily as needed up to 7 days. Skin irritation is scored using the standard rating system and averaged.
GLP:	Yes [] No [X] ? []
Test substance:	LAS (made from Sirene LAB); activity 5%; average alkyl chain length = $C_{11.6}$
Remarks:	Average scores after 72 hours were 1.67 and 2.17 for erythema and oedema, respectively. The primary irritation index was calculated to be 3.82, which classifies 5% LAS as a moderate skin irritant. No differences were observed between intact and abraded skin.
Reference:	Biolab SGS. 1989b. Primary skin irritation. Report No. T343.
Reliability:	2 Valid with restrictions
(f)	
Species/strain:	New Zealand albino rabbits
Results:	Highly corrosive []; Corrosive []; Highly irritating []; Irritating []; Moderate irritating []; Slightly irritating []; Not irritating [X]
Method:	OECD Guideline 404. A single dose of 0.5 g was applied to the clipped intact skin of six rabbits and secured with a gauze pad covered by an impermeable covering. The patch is removed after a 4 hour exposure and the site washed with water. A second site with the skin abraded received the same treatment. Animals are examined for signs of erythema and oedema and the responses scored at 60 minutes, 24, 48 and 72 hr, and daily as needed up to 7 days. Skin irritation is scored using the standard rating system and averaged.
GLP:	Yes [] No [X] ? []
Test substance:	LAS (made from Sirene LAB); activity 2.5%; average alkyl chain length =
Remarks [.]	V _{11.6} No signs of irritation were observed during the study
Reference:	Biolab SGS 1989c Primary skin irritation Report No T00430/2
Reliability:	2 Valid with restrictions
(g)	
Species/strain:	New Zealand albino rabbits
Results:	Highly corrosive []; Corrosive []; Highly irritating []; Irritating []; Moderate irritating []; Slightly irritating []; Not irritating [X]
1 2005	160

Method:	OECD Guideline 404. A single dose of 0.5 g was applied to the clipped intact skin of six rabbits and secured with a gauze pad covered by an impermeable covering. The patch is removed after a 4 hour exposure and the site washed with water. A second site with the skin abraded received the same treatment. Animals are examined for signs of erythema and oedema and the responses scored at 60 minutes, 24, 48 and 72 hr, and daily as needed up to 7 days. Skin irritation is scored using the standard rating system and averaged.
GLP:	Yes [] No [X] ? []
Test substance:	LAS (made from Sirene LAB); activity 1%; average alkyl chain length = $C_{11.6}$
Remarks:	No signs of irritation were observed during the study.
Reference:	Biolab SGS. 1983. Primary skin irritation. Report No. T116/2.
Reliability:	2 Valid with restrictions
(h)	
Species/strain:	albino male and female rabbits
Results:	Irritating []; Moderate irritating []; Slightly irritating []; Not irritating []
Classification:	Highly corrosive (causes severe burns) []; Corrosive (causes burns) []: Irritating [X]: Not irritating []
Method:	The clipped, intact and abraded skin of six albino male and female rabbits was exposed to 0.5 g of finely ground sample moistened with water under a one inch by one inch square patch, two single layers thick. The patches were positioned in place with adhesive tape. The trunk of each animal was wrapped with plastic strips to avoid contamination and retard evaporation for the 24 hour exposure period. Observations were made over a period of seven days for irritation. The data was scored according to the method of Draize, et al.
GLP:	Yes [] No [X] ? []
Test substance:	Sodium sulfonate of linear alkylbenzene (Alkylate-225); C ₉ 1%, C ₁₀ 7%, C ₁₁ 25%, C ₁₂ 48%, C ₁₃ 19%, C ₁₄ 1%; average alkyl chain length = C _{11.9}
Remarks:	Primary Irritation Score: 6.2 Intact Skin: 6.8/8
	Abraded Skin: 6.8/8 Slight to moderate erythema and edema were present after 24 hours. These symptoms persisted through 120 hours. The compound was classed as a primary skin irritant under the grading system as outlined in the Federal Hazardous Substance Act. The sample had a defatting effect on the skin causing the skin to slough off in ten to fourteen days. There was no injury in depth
Reference:	Monsanto Company. 1971. Linear alkylbenzene sodium sulfonate – Alkylate 225 Lot CC 6450 – Acute toxicity screen. Project No. Y-71-119.
Reliability:	2 Valid with restrictions
(i) Spacios/strain:	Naw Zaaland white male and female rephits
Results:	Highly corrosive []; Corrosive []; Highly irritating [X]; Irritating []; Moderate irritating []; Slightly irritating []; Not irritating []
1 2005	160

Ciassification.	Highly corrosive (causes severe burns) []; Corrosive (causes burns) []: Irritating [X]: Not irritating []]
Method:	The clipped, intact and abraded skin of three New Zealand white male and female rabbits was applied with 0.5 g of finely ground sample moistened with water under a one inch by one inch square patch, two single layers thick. The patches were positioned in place with adhesive tape. The trunk of each animal was wrapped with plastic strips to avoid contamination and retard evaporation for the 24 hour exposure period. Observations were made over a period of seven days for irritation. The data was scored according to the method of Draize, Woodard and Calvery (Journal of Pharm. and Exp. Therapeutics, Volume 82, December 1944).
GLP:	Yes [] No [X] ? []
Test substance:	Sodium sulfonate of linear alkylbenzene (Alkylate-215); C ₉ 1%, C ₁₀ 16%, C ₁₁ 43%, C ₁₂ 40%, C ₁₃ 1%, C ₁₄ <1%; average alkyl chain length = C _{11.35}
Remarks:	Moderate to severe erythema and edema were present after 24 hours. These symptoms persisted through 120 hours. The average maximum score was 7.3 out of a possible 8 at 24 hours. The compound was classed as a severe skin irritant. The sample had a defatting effect on the skin causing the skin to slough off in ten to fourteen days. There was no injury in depth.
Reference:	Monsanto Company. 1972a. Linear alkylbenzene sodium sulfonate – Alkylate 215 Lot CC 6772S – Acute toxicity screen. Project No. Y-72- 274. Unpublished report.
Reliability:	2 Valid with restrictions
(j)	
Species/strain:	New Zealand white male and female rabbits
- r	The Planara white male and female fuelds
Results:	Highly corrosive []; Corrosive []; Highly irritating [X]; Irritating []; Moderate irritating []; Slightly irritating []; Not irritating []]
Results: Classification:	Highly corrosive []; Corrosive []; Highly irritating [X]; Irritating []; Moderate irritating []; Slightly irritating []; Not irritating [] Highly corrosive (causes severe burns) []; Corrosive (causes burns) []: Irritating [X]: Not irritating []
Results: Classification: Method:	Highly corrosive []; Corrosive []; Highly irritating [X]; Irritating []; Moderate irritating []; Slightly irritating []; Not irritating [] Highly corrosive (causes severe burns) []; Corrosive (causes burns) []; Irritating [X]; Not irritating [] The clipped, intact and abraded skin of three New Zealand white male and female rabbits was applied with 0.5 g of finely ground sample moistened with water under a one inch by one inch square patch, two single layers thick. The patches were positioned in place with adhesive tape. The trunk of each animal was wrapped with plastic strips to avoid contamination and retard evaporation for the 24 hour exposure period. Observations were made over a period of seven days for irritation. The data was scored according to the method of Draize, Woodard and Calvery (Journal of Pharm. and Exp. Therapeutics, Volume 82, December 1944).
Results: Classification: Method: GLP:	Highly corrosive []; Corrosive []; Highly irritating [X]; Irritating []; Moderate irritating []; Slightly irritating []; Not irritating [] Highly corrosive (causes severe burns) []; Corrosive (causes burns) []; Irritating [X]; Not irritating [] The clipped, intact and abraded skin of three New Zealand white male and female rabbits was applied with 0.5 g of finely ground sample moistened with water under a one inch by one inch square patch, two single layers thick. The patches were positioned in place with adhesive tape. The trunk of each animal was wrapped with plastic strips to avoid contamination and retard evaporation for the 24 hour exposure period. Observations were made over a period of seven days for irritation. The data was scored according to the method of Draize, Woodard and Calvery (Journal of Pharm. and Exp. Therapeutics, Volume 82, December 1944). Yes [] No [X] ?[]
Results: Classification: Method: GLP: Test substance:	Highly corrosive []; Corrosive []; Highly irritating [X]; Irritating []; Moderate irritating []; Slightly irritating []; Not irritating [] Highly corrosive (causes severe burns) []; Corrosive (causes burns) []; Irritating [X]; Not irritating [] The clipped, intact and abraded skin of three New Zealand white male and female rabbits was applied with 0.5 g of finely ground sample moistened with water under a one inch by one inch square patch, two single layers thick. The patches were positioned in place with adhesive tape. The trunk of each animal was wrapped with plastic strips to avoid contamination and retard evaporation for the 24 hour exposure period. Observations were made over a period of seven days for irritation. The data was scored according to the method of Draize, Woodard and Calvery (Journal of Pharm. and Exp. Therapeutics, Volume 82, December 1944). Yes [] No [X] ? [] Sodium sulfonate of linear alkylbenzene (Alkylate-222L); average alkyl chain length = $C_{11.5}$

Monsanto Company.	1972b.	Linear alkylbenzene s	odium sulfonate -
Alkylate 222L Lot CC	6773S –	Acute toxicity screen.	Project No. Y-72-
275. Unpublished repo	rt.		
2 Valid with restriction	IS		
	Monsanto Company. Alkylate 222L Lot CC 275. Unpublished repo 2 Valid with restriction	Monsanto Company. 1972b. Alkylate 222L Lot CC 6773S – 275. Unpublished report. 2 Valid with restrictions	Monsanto Company. 1972b. Linear alkylbenzene s Alkylate 222L Lot CC 6773S – Acute toxicity screen. 275. Unpublished report. 2 Valid with restrictions

5.2.2 EYE IRRITATION/CORROSION

(a)	
Species/strain:	New Zealand albino rabbits
Results:	Highly corrosive []; Corrosive []; Highly irritating [];
	Irritating [X]; Moderate irritating []; Slightly irritating [];
Method:	Not irritating [] OECD Guideline 405. Nine rabbits received a 0.1 mL aliquot of P-500 N- Na placed into the lower everted lid of one eve per animal. For three
	rabbits the eyelids were then gently held together for one second before releasing. For three other rabbits the eyes were irrigated with water for 5 minutes following a 4-second exposure. For the remaining three rabbits the eyes were irrigated for 5 minutes following a 30-second exposure.
CLD	exposure. Grading was performed using the standard scoring system.
GLP:	Yes [X] NO [] ? [] All with any angle of the solution of the design of
Test substance:	Any ibenzene sufformate, sodium sait (designated as P-500 N-Na). Activity 47%. Average alkyl chain length = $C_{11.2}$. Clear yellow liquid.
Remarks:	The following results were noted:
	1) Three animals without any rinsing: averaged irritation scores (24, 48, 72 hours) for each animal: cornea 2.3, 1.7, 2; iris: 1.3, 0, 0; conjunctivae redness: 3, 1.7, 2; conjunctivae chemosis: 3, 2, 2. In the first animal the effects were persistent at day 14
	2) Three animals with rinsing for five minutes following a 30 second exposure: averaged scores: cornea 0.7, 1, 1.3; iris: 0, 0.7, 0.3; conjunctivae redness: 1.7, 2, 1.3; conjunctivae chemosis: 2, 1.3, 2. The
	eyes were normal 7 or 14 days after instillation.
	3) Three animals with rinsing for five minutes following a 4 second exposure: averaged scores: cornea 0.7, 2.3, 0.7; iris: 0, 0, 0; conjunctivae redness: 1.7, 1.7, 1; conjunctivae chemosis: 1.3, 2, 1. The eyes were normal 7 days after instillation
	Findings lead to a definition of irritating for LAS at 47% applied without rinsing, irritating (even if with lower effects, mainly as cornea opacity and conjunctivae redness) with rinsing after 30 second of exposure, and not irritating with rinsing after 4 second of exposure
	Overall, instillation of P-500 N-Na into the eyes of rabbits elicited positive responses in all animals. Irrigation of the eyes only slightly reduced the irritation potential
Reference:	Liggett, M.P. and Parcell, B.I. 1986b. Irritant effects on the rabbit eye of P 500 N Na Huntingdon Pascarch Ctr Penort No. 86570D/PEO 10/SE
Reliability:	1 Valid without restriction
(b) Species/strain:	New Zealand albino rabbits
Results:	Highly corrosive []; Corrosive []; Highly irritating []; Irritating [X]; Moderate irritating []; Slightly irritating [];

Method:	Not irritating [] OECD Guideline 405. Six rabbits were exposed to 0.1 ml of 50% LAS, which was placed into the conjunctival sac of one eye per animal. The eyelids were gently held together for one second and then released. No irrigation step was performed The eyes were examined at 1, 24, 48 and 72 hours and at 7 days and scored for irritation using the standard system.
GLP: Test substance:	Yes [] No [X] ? [] LAS (made from Sirene LAB); activity 50%; average alkyl chain length = $C_{11.6}$
Remarks:	Average irritation scores were 1.3, 1.0, 2.6, and 2.7 for the cornea, iris, conjunctival redness, and conjunctival chemosis, respectively. Effects were persistent to Day 6. This classifies LAS at 50% as irritating.
Reference: Reliability:	Biolab SGS. 1989d. Acute eye irritation. Report No. 00428/13. 2 Valid with restrictions
(c)	
Species/strain: Results:	rabbit Highly corrosive []; Corrosive []; Highly irritating [];
	Irritating [X]; Moderate irritating []; Slightly irritating [];
Classification:	Irritating [X] ; Not irritating [] ; Risk of serious damage to eves []
Method:	OECD Guide-line 405 "Acute Eye Irritation/Corrosion" 1981
GLP:	Yes [] No [X] ? []
Test substance:	Marlon A 350 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length
Remarks:	= $C_{11.6}$; activity: 50%. The mean irritation index was 26.5 out of 110. Individual scores: 1.0; iris: 0; conjunctivae chemosis: 1.11, conjunctivae redness: 2.39
Reference:	Murmann, P. 1983b. Prufung der akuten Augen-und Schleimhautreiz Wirkung von Marlon A 350. Huels Report No. 0172.
Reliability:	2 Valid with restrictions
(d)	
Species/strain:	rabbit
Results:	Highly corrosive []; Corrosive []; Highly irritating []; Irritating [X]; Moderate irritating []; Slightly irritating []; Not irritating []
Classification:	Irritating [X]: Not irritating [1]: Risk of serious damage to eves [1]
Method:	OECD Guide-line 405 "Acute Eye Irritation/Corrosion" 1984
GLP:	Yes [X] No []?[]
Test substance:	LAS
Remarks:	Possibility of persistent effects on the eye.
Reference:	Kaestner, W., Henkel KGaA, unpublished data, Report No. 870553 (1987).
Reliability:	4 Not assignable
(e)	
Species/strain:	rabbit
Results:	Highly corrosive []; Corrosive []; Highly irritating []; Irritating [X]; Moderate irritating []; Slightly irritating []; Not irritating []
Classification:	Irritating [X]; Not irritating []; Risk of serious damage to eyes []

Method:	0.1 mL solutions of LAS at 5 different concentrations ranging from 0.01 to 1.0 % were instilled in the eyes of rabbits (13 per group). The rabbits were observed for 24 hours after LAS application.
GLP∙	Yes $[1]$ No $[X]$? $[1]$
Test substance:	C_{10-13} LAS, (CAS #68411-30-3). Molecular weight 346.5; average alkyl
Remarks:	Information as cited in IPCS document. The 0.01 % group showed no abnormalities, but the 0.05 % group showed slight congestion. The groups of 0.5 % and higher concentrations showed marked reactions such as severe congestion and oedema, increased secretion, turbidity of the
Reference:	Oba, K., Mori, A. and Tomiyama, S. 1968. Biochemical studies of n- alpha-olefin sulfonates (II) Acute toxicity, skin and eye irritation, and some other physical properties. Journ. Jap. Oil Chem. Soc. 17:628-634. (In Japanese) cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva Switzerland
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(f)	
Species/strain:	rabbit
Results:	Highly corrosive []; Corrosive []; Highly irritating []; Irritating [X]; Moderate irritating []; Slightly irritating []; Not irritating []
Classification: Method:	Irritating [X] ; Not irritating []; Risk of serious damage to eyes [] LAS solutions at 6 different concentrations ranging from 0.01% to 5.0% were instilled in the eyes of rabbits (3 per group). The rabbits were observed for 168 hours after LAS application.
GLP:	Yes [] No [X] ? []
Test substance:	LAS (chain length distribution C_{10-14} ; 80.9% of C_{11-13}) (CAS #69669-44- 9); average alkyl chain length (based on LAS SIDS Consortium Survey, 2000) = $C_{11.7}$
Remarks:	Information as cited in IPCS document. The 0.01% group showed no reaction. Within 2 hours, the 0.05% group showed slight congestion and the 0.1% group showed considerable congestion or oedema, which disappeared at 24 hours. In the group of 0.5% and higher, marked reactions such as severe congestion an oedema, increased secretion, turbidity of the cornea, and disappearance of the corneal reflex were observed for 24 hours. The effects disappeared completely at 120 hours
Reference:	 Iimori, M., Ogata, T. and Kudo, K. 1972. Eye irritation testing of surface active agents in experimental animals. Jour. Jap. Oil Chem. Soc. 22:807-813 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(g)	
Species/strain:	New Zealand albino rabbits

Specie

Results:	Highly corrosive []; Corrosive []; Highly irritating []; Irritating []; Moderate irritating []; Slightly irritating []; Not irritating [X]
Method:	OECD Guideline 405. Six rabbits were exposed to 0.1 ml of 1% LAS, which was placed into the conjunctival sac of one eye per animal. The eyelids were gently held together for one second and then released. No irrigation step was performed The eyes were examined at 1, 24, 48 and 72 hours and at 7 days and scored for irritation using the standard system.
GLP:	Yes [] No [X] ? []
Test substance:	LAS (made from Sirene LAB); activity 1%; average alkyl chain length = $C_{11.6}$
Remarks:	Average irritation scores were 0, 0, 0.1, and 0.1 for the cornea, iris, conjunctival redness, and conjunctival chemosis, respectively. This classifies LAS at 1% as not irritating.
Reference:	Biolab SGS. 1984. Acute eye irritation. Report No. T3R/27.
Reliability:	2 Valid with restrictions
(h)	
Species/strain:	New Zealand albino rabbits
Results:	Highly corrosive []; Corrosive []; Highly irritating []; Irritating []; Moderate irritating [X]; Slightly irritating []; Not irritating []
Methods:	OECD Guideline 405. Six rabbits were exposed to 0.1 ml of 5% LAS, which was placed into the conjunctival sac of one eye per animal. The eyelids were gently held together for one second and then released. No irrigation step was performed The eyes were examined at 1, 24, 48 and 72 hours and at 7 days and scored for irritation using the standard system.
GLP:	Yes [] No [X] ? []
Test substance:	LAS (made from Sirene LAB); activity 5%; average alkyl chain length = $C_{11.6}$
Remarks:	Average irritation scores were 0, 0, 1.83, and 1.16 for the cornea, iris, conjunctival redness, and conjunctival chemosis, respectively. This classifies LAS at 5% as moderately irritating.
Reference: Reliability:	Biolab SGS. 1988. Acute eye irritation. Report No. T343. 2 Valid with restrictions
(i)	
Species/strain:	albino male and female rabbits
Results:	Highly corrosive []; Corrosive []; Highly irritating [];
	Irritating []; Moderate irritating [X] ; Slightly irritating []; Not irritating []
Classification: Method:	Irritating [X] ; Not irritating [] ; Risk of serious damage to eyes [] A total of 100 mg of finely ground sample was administered in the conjunctival sac of the right eye of each of six albino male and female rabbits. Observations for inflammation were made over seven days. The treated eyes were washed with sodium chloride solution USP after the 24 hour reading. The left eye served as a control. The data was scored according to the method of Draize, et al. Tests were conducted in accordance with the Federal Hazardous Substance Act.
GLP:	Yes [] No [X] ? []
Test substance:	Sodium sulfonate of linear alkylbenzene (Alkylate-225) C ₉ 1%, C ₁₀ 7%, C ₁₁ 25%, C ₁₂ 48%, C ₁₃ 19%, C ₁₄ 1%; average alkyl chain length = $C_{11.9}$
1 2005	174

Remarks:	The compound is classified as an eye irritant under the grading system as outlined in the Federal Hazardous Substances Act. Slight to moderate erythema was present after 10 minutes and persisted through 72 hours. Edema was present after 1 hour and persisted through 24 hours. The average maximum irritation score was 19.3 out of a possible 110.
Reference:	Monsanto Company. 1971. Linear alkylbenzene sodium sulfonate – Alkylate 225 Lot CC 6450 – Acute toxicity screen. Project No. Y-71- 119. Unpublished report.
Reliability:	2 Valid with restrictions
(j) Species/strain: Results:	albino male and female rabbits Highly corrosive []; Corrosive []; Highly irritating []; Irritating []; Moderate irritating []; Slightly irritating [X]; Not irritating []
Classification: Method:	Irritating [X] ; Not irritating []; Risk of serious damage to eyes [] A total of 100 mg of finely ground sample was administered in the conjunctival sac of the right eye of each of three albino male and female rabbits. Observations for inflammation were made over seven days. The treated eyes were washed with isotonic saline solution after the 24 hour reading. The left eye served as a control. The data was scored according to the method of Draize, et al. Tests were conducted in accordance with the Federal Hazardous Substance Act.
GLP: Test substance:	Yes [] No [X] ? [] Sodium sulfonate of linear alkylbenzene (Alkylate-215) C ₉ 1%, C ₁₀ 16%,
Remarks:	C_{11} 43%, C_{12} 40%, C_{13} 1%, C_{14} <1%; average alkyl chain length = $C_{11.35}$ Slight erythema and a copious discharge were present 10 minutes after application. A slight erythema persisted for 72 hours after which the eyes returned to normal. The average maximum score was 10 out of a possible 110 after 24 hours. This compound is classified as a slight eye irritant.
Reference:	Monsanto Company. 1972a. Linear alkylbenzene sodium sulfonate – Alkylate 215 Lot CC 6772S – Acute toxicity screen. Project No. Y-72- 274. Unpublished report.
Reliability:	2 Valid with restrictions
(k) Species/strain: Results:	albino male and female rabbits Highly corrosive []; Corrosive []; Highly irritating []; Irritating []; Moderate irritating []; Slightly irritating [X]; Not irritating []
Classification: Method:	Irritating [X] ; Not irritating [] ; Risk of serious damage to eyes [] A total of 100 mg of finely ground sample was administered in the conjunctival sac of the right eye of each of three albino male and female rabbits. Observations for inflammation were made over seven days. The treated eyes were washed with isotonic saline solution after the 24 hour reading. The left eye served as a control. The data was scored according to the method of Draize, et al. Tests were conducted in accordance with the Federal Hazardous Substance Act.
GLP: Test substance:	Yes [] No [X] ? [] Sodium sulfonate of linear alkylbenzene (Alkylate-222L; average alkyl chain length = $C_{11.5}$)

Remarks:	Moderate erythema and slight edema and a copious discharge were present 10 minutes after application. A slight erythema persisted for 72 hours after which the eyes returned to normal. The average maximum score was 18 out of a possible 110 after 24 hours. This compound is
	classified as a mild eve irritant
Reference:	Monsanto Company, 1972b. Linear alkylbenzene sodium sulfonate –
	Alkylate 222L Lot CC 6773S – Acute toxicity screen. Project No. Y-72-
	275. Unpublished report.
Reliability:	2 Valid with restrictions

5.3 SKIN SENSITIZATION

(a)	
Type:	Sensitisation test
Species/strain:	Guinea pig (males & females, albino)
Results:	Sensitising []; Not sensitising [X]; Ambiguous []
Classification:	Sensitising []; Not sensitising [X]
Method:	Buehler Test; OECD Guideline 406 "Skin Sensitization" 1981; Directive 84/449 EEC B.6. "A cute Toxicity - Skin Sensitization"
GI P·	V_{es} [X] No [] ? []
Test Substance	LAS: activity: 6.7%; average alkyl chain length = C_{11}
Remarks:	The purpose of this study was to assess the allergenic potential of LAS
	when administered to the skin. 10 animals $(5M/5F)$ remained untreated
	and were used as controls to be treated at first challenge. 10 animals
	(5M/5F) remained untreated and were used as additional controls to be
	treated at second challenge; 20 animals (10M/10F) were treated with LAS.
	Induction concentration was 1.0% in water; first and second challenge
	concentrations were 0.8% in water. $0/20$ animals responded in the treated
	group; 0/10 animals responded in the control group.
Reference:	European Commission. 2000o. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs.,
	sodium salts. Year 2000 CD-ROM edition, citing The Procter & Gamble
	Company, unpublished data, Reports No. RCC-2315547.
Reliability:	4 Not assignable
(b)	
Type:	Guinea pig maximisation test
Species/strain:	guinea pig, females
Results:	Sensitising []; Not sensitising [X]; Ambiguous []
Classification:	Sensitising []; Not sensitising [X]
Method:	OECD Guide-line 406 "Skin Sensitisation" 1981
GLP:	Yes [] No [X] ? []
Test substance:	Marlon A 350 (CAS #68411-30-3) C ₁₀₋₁₃ LAS, average alkyl chain length
	$= C_{11.6}$; activity: 50%.
Remarks:	0.1% intracutaneous and 3% epidermal doses. No sensitizing effects were
	observed.
Reference:	Murmann, P. 1988. Prufung auf hautsensibilisierende Wirkung am
	Meerschweinchen von Marlon A 350. Huels Report No. 1387.
Reliability:	2 Valid with restrictions
(a)	
(C)	
(C) Type:	Maximization test

Species/strain:	Guinea pig, Hartley
Results:	Sensitising []; Not sensitising [X]; Ambiguous []
Classification:	Sensitising []; Not sensitising [X]
Method:	OECD Guideline 406, 1981; Directive 179/831 Annex, Part B.
GLP:	Yes [X] No [] ? []
Test substance:	LAS, activity: 50%; average alkyl chain length = $C_{11.6}$
Remarks:	Solutions of LAS were applied intracutaneously and epicutaneously to 10 male and 10 female animals. Induction concentration was 25% in water; the challenge concentration was 12.5%. No positive responses were observed.
Reference:	RBM. 1985. Test di sensibilizzazione cutanea nella cavia. RBM Exp. No. 2076.
Reliability:	1 Valid without restriction

5.4 **REPEATED DOSE TOXICITY**

(a)	
Species/strain:	Rat (FDRL)
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	Oral feed
Exposure period:	12 weeks
Dose:	50 or 250 mg/kg bw d
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL:	50 mg/kg bw d
LOAEL:	250 mg/kg bw d
Results:	No behavioural abnormalities were noted during the test period. Growth responses were equal in all groups. There were no differences in food intake or in efficiency of food utilization. The clinical data showed no abnormal variations in any of the dose groups. The relative organ weights and the histopathological evaluation did not show significant differences among the dose groups except a liver weight increase in female animals of the high dose group.
Method:	Based on Fitzhugh and Schouboe (1959) Subacute toxicity in: Assoc. Food Drug Offices of the U.S., Austin, Texas, p. 26-35. Weanling rats were distributed into 5 groups of 15 male and 15 female animals per dose group. All rats were given standard diet daily. Doses were 0, 50 and 250 mg/kg bw d in the diet. Daily observations of behavior and signs of toxicity were made. Food consumption and blood and urine chemistries were also measured periodically. Organ weights and gross pathological findings were measured at the end of the study in the liver, kidneys, spleen, heart, adrenals, pituitary, and cecum.
GLP:	Yes [] No [X] ? []
Test substance:	C_{10-13} LAS, sodium salt, activity: 39.5%; average molecular weight 346;
Reference:	Oser, B.L. and Morgareidge, K. 1965. Toxicological studies with branched and linear alkyl benzene sulfonates in rats. Toxicol. Appl. Pharmacol. 7:819-825.
Reliability:	2 Valid with restrictions
(b)	
Species/strain:	rat (Sprague-Dawley)
-------------------------	---
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	oral feed
Exposure period:	90 days
Frequency of treatment:	Ad libitum
Dose:	0.02/0.1/0.5% (corresponding to 8.8, 44 and 220 mg/kg bw d)
Control group:	Yes [X] ; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL:	0.5% (220 mg/kg bw d)
Results:	No adverse effects were found upon the following parameters: growth, food efficiency, survival, haematologic values, and urinary analytical
	absolute and relative organ weights, nor were gross histopathological changes observed in any of the organs examined.
Method:	Groups of 10 male and 10 female weanling rats were fed levels of 0.02, 0.1 or 0.5% LAS in a communication for 00 days. Dody weights food
	consumption mortality and several blood parameters were measured
	periodically during the study and at termination. Autonsy and
	microscopic examination of the organs was performed at test termination
	Organ weights and gross nathological findings were recorded for the liver
	kidneys spleen gonads heart and brain
GLP.	Yes [] No [X] ? []
Test substance:	$C_{10,14}$ LAS, sodium salt (CAS #69669-44-9), activity: 87.9%; C_{10} 1.8%
	C_{11} 43.2%, C_{12} 32.2%, C_{13} 16.0%, C_{14} 5.3%, C_{15} 1.5%; average alkyl chain length = C_{118} ; mean molecular weight 346
Remarks [.]	Two male rats at the 0.2% level died in the early stages of the study
	These deaths were attributed to respiratory illness and were not considered to be treatment related.
Reference:	Kay, J.H., Kohn, F.E. and Calandra, J.C. 1965. Subacute oral toxicity of
	a biodegradable linear alkylbenzene sulfonate. Toxicol. Appl. Pharmacol. 7:812-818.
Reliability:	2 Valid with restrictions
(c)	
Species/strain:	Rat/Sprague-Dawley
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	gavage
Exposure period:	one month
Frequency of treatment:	daily
Dose:	125, 250, 500 mg/kg bw d.
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL:	125 mg/kg bw d
LOAEL:	250 mg/kg bw d
Results:	Diarrhea was observed in the 500 mg/kg group and soft stools were
	observed in the other 2 groups. Body weight gain was suppressed in all
	the male groups and in the female 500 mg/kg group. Haematological
	examinations revealed no abnormalities. Serum-biochemical
	examinations revealed several differences among the mid and high dose
	group compared to the control group. The weight of the spleen and the heart significantly decreased in the male high dose group. In the female high dose group, the weight of the liver increased while the weight of the
	ingh about group, the worght of the river increased while the worght of the

	heart and thymus decreased. Histological findings of the liver revealed no abnormalities.
GLP:	Yes [] No [X] ? []
Remarks:	Information as cited in IPCS document. 12 animals per dose group.
Test substance:	C ₁₀₋₁₃ LAS, sodium salt (CAS #68411-30-3)
	<c<sub>10 0.1%, C₁₀ 10.1%, C₁₁ 33.7%, C₁₂ 31.0%, C₁₃ 25.1%; average alkyl</c<sub>
	chain length = $C_{11.7}$; activity: 99.5%
Reference:	1) European Commission. 2000a. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Ito, R., Kawamura, H., Chang, H.S., Kudo, K., Kajiwara, S., Toida, S., Seki, Y., Hashimoto, M. and Fukushima, A. 1978. J. Med. Soc. Toho,
	Japan, 25:850-875 (in Japanese). cited in IPCS. 1996. Environmental
	Health Criteria 169: Linear Alkylbenzene Sulfonates and Related
	Compounds. World Health Organization, Geneva, Switzerland.
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.

(d)	
Species/strain:	Rat (Wistar)
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	oral feed
Exposure period:	9 months
Frequency of treatment	: Daily in feed
Dose:	0.6% and 1.8% (260 and 780 mg/kg bw d)
Control group:	Yes [X] ; No []; No data [];
	Concurrent no treatment []; Concurrent vehicle []; Historical []
LOAEL:	= 0.6% (260 mg/kg bw d)
Results:	In the 1.8% dose group, the body weight gain was suppressed and haematological and serum-biochemical adverse effects were observed in both treatment groups of both seves. The weight of the cecum of the male
	rats and the weight of the liver and cecum of the females in the high dose
	and kidneys revealed changes in different enzyme activities in the 1.8%
	groups. The intake of LAS was 230 mg/kg bw d in the male 0.6% group
GT D	and 290 mg/kg bw d in the female 0.6% group.
GLP:	Yes [] No [X] ? []
Test substance:	C_{10-14} LAS, sodium salt (CAS #69669-44-9) C_{10} 10.6%, C_{11} 34.1%, C_{12}
	27.7%, C_{13} 19.0%, C_{14} 8.7%; average alkyl chain length = $C_{11.8}$; mean molecular weight: 345.8.
Remarks:	Information as cited in IPCS document. 8 rats were used per dose group.
Reference:	1) European Commission. 2000a. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl
	derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Yoneyama, M., Mabuchi, Y., Ikawa, M., Kobayaski, H. and Ichikawa,
	H. 1976. Subacute toxicity of linear alkyl benzene sulfonate. Ann. Rep.
	Tokyo Metr. Res. Lab. P.H. 27(2): 105-112 (in Japanese); cited in: IPCS
	(1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.

Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(e)	
Species/strain:	Rat (Wistar)
Sex:	Female []; Male [X]; Male/Female []; No data []
Administration:	oral feed
Exposure period:	2, 4, 12 weeks
Frequency of treatment	: Daily in feed
Dose:	1.5% (750 mg/kg bw d)
Control group:	Yes [X]; No []; No data [];
C I	Concurrent no treatment []; Concurrent vehicle []; Historical []
LOAEL:	1.5% (750 mg/kg bw d)
Results:	LAS suppressed body weight gain, and the relative liver weight was
	increased from 2 weeks of LAS administration. Serum biochemical
	examinations revealed significant increases in ALP and GTP at each
	observation period and significant decreases in cholesterol and protein in 4
	weeks. Enzymatic examinations of the liver revealed decreases in G6Pase
	and G6PDH and an increase in isocitrate dehydrogenase (IDH) at each
	observation period. Enzymatic examinations of the renal cortex revealed
	decreases in G6Pase and 5'-nucleotidase at each observation period, an
	increase in LDH at 12 weeks, and an increase in IDH at 2 and 4 weeks.
	Enzymatic examinations in the renal medulla revealed a decrease in
	NA,K-ATPase, an increase in LDH at 12 weeks, a decrease in IDH at 2
	weeks, and an increase in IDH at 12 weeks.
GLP:	Yes [] No [X] ? []
Test substance:	LAS (unspecified)
Remarks:	Information as cited in IPCS document.
Reference:	1) European Commission. 2000a. Benzenesultonic acid, C_{10-13} -alkyl
	derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Ikawa, M., Yoneyama, M., Nakao, I. and Hiraga, K. 1978. Uptake of
	LAS and ADS Ann Don Tolyto Matr. Dog Lab. D.H. 20:51.54 (in
	LAS and ADS. Ann. Rep. 10kyo Mell. Res. Lao. P.H. 29.51-54 (III Japaneses): sited in: IDCS (1006): Environmental Health Criteria 160:
	Japanese), cited in. IFCS (1990), Environmental Health Citteria 109.
	Geneva Switzerland
Reliability:	Λ This study is assigned a reliability score of Λ because the original
Kendonity.	report was not available for review However, the study was evaluated
	by IPCS prior to inclusion in their criteria document
(f)	
Species/strain:	Rat (Wistar)
Sex:	Female []: Male []: Male/Female [X]: No data []
Administration:	oral feed
Exposure period:	6 months
Frequency of treatment	: Daily in feed
Dose:	0.07, 0.2, 0.6, 1.8% (40, 115, 340, 1030 mg/kg bw d)
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL:	= 40 mg/kg bw d
LOEL:	= 115 mg/kg bw d

August 11, 2005

Results:	The 1.8% group showed diarrhoea, markedly suppressed growth, increased weight of the cecum, and remarkable degeneration of the renal tubes. The 0.6% group showed slightly suppressed growth, increased weight of the cecum, increased activity of serum alkaline phosphatase (ALP), a decrease in serum protein and degeneration of the renal tubes. The 0.2% group showed increased weight of the cecum and slight degeneration of the renal tubes, the 0.07% group showed no adverse effects related to the administration of LAS. The intake of LAS in the 0.07% group was about 40 mg/kg bw d
GLP.	Yes [] No [X] ? []
Test substance:	C_{10-14} LAS, sodium salt (CAS #69669-44-9). C_{10} 10.6%, C_{11} 34.1%, C_{12} 27.7%, C_{13} 19.0%, C_{14} 8.7%; average alkyl chain length = $C_{11.8}$; mean molecular weight: 345.8.
Remarks:	Information as cited in IPCS document. This is a key study for repeated dose toxicity because it represents the lowest LOAEL (see SIAR Table 6).
Reference:	 European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition. Yoneyama, M. Fujii, T., Ikawa, M., Shiba, H., Sakamoto, Y., Yano, N., Kobayashi, H., Ichikawa, H. and Hiraga, K. 1972. Studies on the toxicity of synthetic detergents. (II) Subacute toxicity of linear and branched alkyl benzene sulfonates in rats. Ann. Rep. Tokyo Metrap. Res. Lab. Public Health. 24:409-440. (In Japanese). cited in IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(g) Species/strain: Sex: Administration: Exposure period: Doses:	Rat Female []; Male []; Male/Female [X] ; No data [] gavage 10 weeks 50, 100 or 250 mg/kg by/d
Control:	Yes [X] ; No []; No data [];Concurrent no treatment [X] ; Concurrent vehicle []: Historical []
LOEL:	50 mg/kg bw d
Results:	Histopathology was evaluated in the females only. At the highest dose level, the kidneys showed mild degeneration and desquamation of the tubular epithelium and there was a moderate degree of fatty change in the liver as well as proteinaceous degeneration. Sections of the intestine did not exhibit any significant histologic variation. Adenosine triphosphatase activity was inhibited with increasing dose in both sexes while alkaline phosphatase and acid phosphatase activities were increased with increasing dose. The activity of lactate dehydrogenase was significantly inhibited at all dose levels in females but was not measured in males. SGOT and SGPT were significantly decreased in females at 100 and 250 mg/kg/day and SGPT was inhibited in males at 250 mg/kg/day.
Method:	I wenty four male $(50+/-5g)$ and 36 female $(40+/-5g)$ rats were given daily oral (cannula) doses of LAS detergent solution (0, 50, 100 and 250 mg/kg) by gavage for 10 weeks. Animals were maintained on standard pellet diets and drinking water <i>ad libitum</i> . After 10 weeks, animals were

	fasted for 24 hours and sacrificed. Liver, kidney, heart, and intestine were
	removed immediately, weighed, and parts sectioned for histological
	examinational. The remaining parts of the liver and kidney homogenized
	in ice cold 0.25 M sucrose solution using Potter-Elvehjem type
	homogenizer and 10% w/v homogenates were prepared for
	histopathology and enzyme analysis. The activities of adenosine
	triphoshatase (ATPase), acid phosphatase (ACP), alkaline phosphatase
	(ALP), glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic
	transaminase (GPT) were determined in the homogenates.
GLP:	Yes [] No [X] ? []
Remarks:	All of the effects observed are related to energy metabolism, so given the
	lack of morphological and structural changes, the reduced food intake and
	body weight gain may have compromised energy dynamics and affected
	the enzyme levels. The reliability and use of this study for risk
	assessment purposes is limited and the 50 mg/kg/day level should be
	considered a LOEL rather than a LOAEL.
Test Substance:Comme	rcial LAS synthetic detergent solution
Reference:	1) Gupta, B.N., Mathur, A.K., Agarwal, C., and Singh, A. 1986. Effect of
	synthetic detergent on certain enzymes in liver and kidney in male rats.
	Arogya-J. Health Sci. 12:50-54.
	2) Mathur, A.K., Gupta, B.N., Singh, A., and Shanker, R. 1986.
	Toxicological evaluation of a synthetic detergent after repeated oral
	ingestion in rats. Biol. Mem. 12:187-191.
Reliability:	2 Valid with restrictions
(1-)	
(n)	\mathbf{D}_{-4} (Winter)
Species/strain:	
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	drinking water
Exposure period:	9 monuns • Deily in drinking water
Dese:	. Daily in difficing water. 0.07, 0.20/, 0.60/, (85, 1.45, 420, mg/kg, bw, d: average of male and female).
Dose.	0.07, 0.270, 0.070 (63, 143, 430 ling/kg bw u, average of male and remain)
Control group.	res [A], No [], No dala [], Concurrent no treatment []: Concurrent vehicle []: Historical []]
NOATI	Concurrent no treatment [], Concurrent venicle [], Historical []
NOAEL.	0.07% (63 mg/kg bw d) 0.2% (145 mg/kg bw d)
LUAEL. Dogulta:	0.2% (143 mg/kg UW u) Dedu weight gain was summassed in the male 0.6% group. Hometalogical
Results.	body weight gain was suppressed in the male 0.0% group. Hematological
	groups but a dose related decrease in chalegterel level was seen in males
	Significant decreases in the activities of glutamate evaluate transaminase.
	and lactate dehydrogenase were seen in males at 0.2% and a dose related
	increase in the activity of glutamate avalate transaminase in females.
	significant decrease in renal Na K_{-} A TPase was seen in the group given
	0.2% No organ weight changes were observed. The intake of LAS was
	50 mg/kg by d in the male 0.07% group and 120 mg/kg by d in the
	female group. The values for the 0.2% group were 120 and 170 mg/kg bw
	d for males and females, respectively
Method:	Groups of 8-9 male and 8-9 female rats were given LAS for 9 months
GLP:	Yes [] No [X] ? []
Remarks:	Information as cited in IPCS document. This is a key study for repeated
	dose toxicity because it represents the highest NOAEL below the lowest
	LOAEL (see SIAR Table 6).

Test substance:	C_{10-14} LAS (CAS #69669-44-9); average alkyl chain length (based on LAS SIDS Consortium Survey, 2000) = C_{117}
Reference:	1) European Commission. 2000a. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Yoneyama, M., Mabuchi, Y., Ikawa, M., Kobayashi, H. and Ichikawa, H. 1976. Subacute toxicity of linear alkylbenzene sulfonate. Ann. Rep. Tokyo Metr. Res. Lab. Public Health 27:105-112 (in Japanese); cited in: IPCS (1996); Environmental Heath Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO Geneva, Switzerland.
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(i)	
Species/strain:	mouse (DDY)
Sex:	Female []; Male []; Male/Female []; No data [X]
Administration:	drinking water
Exposure period:	6 months
Frequency of treatment	: Daily
Observation period:	2 months post exposure
Dose:	100 ppm in the drinking water (20 mg/kg bw d)
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
Results:	Atrophy of the golgi apparatus, degeneration of the mitochondria, and
	increased appearance of lysosomes were observed. The severity of these
	adverse effects were dependent on the length of the administration. After
	six months, some cells showed degenerative cytoplasm and indications of
	cell necrosis. Effects on the rough endoplasmatic reticulum were
	observed. Some animals still showed cellular effects after the two months
	post administration period while other animals showed full recovery.
	Given the unknown significance of the effects for the health of the animals
	and the reversibility of the effects, as well as the consistent lack of adverse
	effects in other studies at similar or higher doses, the dose tested in this
	study is considered a LOEL rather than a LOAEL.
Method:	LAS was administered up to 6 months. The animals were sacrificed at 1,
	2, 3, and 6 months. Some animals were observed an additional 2 months
	without test substance administration. Liver slices were investigated using
	electron microscopy.
GLP:	Yes [] No [X] ? []
Remarks:	The reliability and usefulness of this study for risk assessment purposes is
	limited. The study employed only a single dose (i.e., no dose response
	information). In addition, there is the likelihood of dehydration of the
	animals. Because of these study deficiencies, it was determined that it is
	inappropriate to derive a LOAEL from this study.
Test substance:	LAS (unspecified)
Reference:	1) European Commission. 2000a. Benzenesulfonic acid, C_{10-13} -alkyl
	derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Watari, N., Torizawa, K., Kanai, M. and Suzuki, Y. 1977.
	Ultrastructural observations of the protective effect of glycyrrhizin for
	mouse liver injury caused by oral administration of detergent ingredient
	(LAS) J. Clin. Electron. Microscopy 10:121-139 (in Japanese) cited in
	IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene

Reliability:	 Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland. 4 This study is assigned a reliability score of 4 because the original report was not available for review. While the study was evaluated by IPCS prior to inclusion in their criteria document, the deficiencies noted above make its usefulness in risk assessment questionable.
(j)	
Species/strain:	mouse (ICR)
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	Oral feed or water
Exposure period:	9 months
Frequency of treatment:	Daily
Dose:	Diet: 0.6 and 1.8% (corresponding to 500 and 1000 mg/kg bw d).
Diet:	Drinking water: 0.07, 0.2, and 0.6% (100, 250, and 600 mg/kg bw d for males and 100, 250, and 900 mg/kg bw d for females)
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL:	250 mg/kg bw d in drinking water
LOAEL:	500 mg/kg bw d in diet
Results:	In the mice given 0.6% in their diet, body weight gain was not suppressed,
	but the weight of the liver increased in male and female mice. Enzymatic examinations revealed significant decreases in LDH of the liver and in acid phosphatase of the kidneys in the male mice. For mice given LAS in drinking water, body weight was depressed at the highest dose for males and females. This dose also elicited an increase in liver weight in females and significant decreases in renal Na and K-ATPase.
Method:	Groups of 8 or 9 mice were given diets containing LAS at concentrations of 0.6 and 1.8% or drinking water containing LAS at concentrations of $0.07, 0.2$ and 0.0% for 0 membra
CLD	0.07, 0.2, and 0.0% for 9 months.
GLP:	
Test substance:	
Reference:	 European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition. Yoneyama, M., Mabuchi, Y., Ikawa, M., Kobayashi, H. and Ichikawa, H. 1976. Subacute toxicity of linear alkylbenzene sulfonate. Ann. Rep. Tokyo Metr. Res. Lab. P.H. 27(2):105-112 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland. HERA. 2002. HERA-LAS Human and Environmental Risk Assessment: Linear Alkylbenzene Sulphonates, LAS. CAS No. 68411-30-3, Draft #6, May 2002.
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(k)	
Species/strain: Sex: Administration:	Rat: Charles River Female []; Male []; Male/Female [X]; No data [] oral feed

Doses:	0.02, 0.1, 0.5% (10, 50, 250 mg/kg bw d)
Control group:	Yes [X]; No []; No data [];
Results:	Concurrent no treatment [X] ; Concurrent vehicle [] ; Historical [X] Gross examination of all animals for pathology did not reveal any
	abnormalities. No consistent dietary induced changes that could be considered a toxic response were observed. Animals that showed significant loss of weight, development of tumors, or other evidence of abnormalities were sacrificed and tissues examined. The incidence of tumors and the common incidental diseases were similar in all dieting groups. No treatment-related adverse histological effects were observed in any of the tissue sections examined
Method:	Four groups of Charles River weanling rats, divided by sex, were given
	0.5, 0.1, and 0.02% LAS in their food for 2 years. Following completion of those studies, five male and five female rats from each of the parental groups (F_{1b} and F_{2b}) and all survivors were selected for necropsy. Livers and kidneys were removed and weighed. Body weight and organ to body weight ratios were recorded, and routine hematology and histology were performed. Sections for histological examination were taken from the liver, kidney, thyroid, trachea, esophagus, lung, heart, spleen, pancreas, adrenals, stomach, small intestine, urinary bladder, gonads and mesenteric lymph nodes. Weanling animals for the F_{3a} generation were similarly treated.
GLP:	Yes [] No [X] ? []
Test substance:	C_{10-14} LAS, sodium salt; activity: 98.1% on an anhydrous basis (41.9% active)
Reference:	Buehler, E.V., Newmann, E.A., and King, W.R. 1971. Two year feeding and reproduction study in rats with linear alkylbenzene sulfonate (LAS). Toxicol. Appl. Pharmacol. 18:83-91.
Reliability:	2 Valid with restrictions
(1)	
Species/strain:	Rat/Wistar
Sex:	Female []; Male [X]; Male/Female []; No data []
Administration:	Drinking water
Exposure period:	2 years
Frequency of treatment:	Daily
Doses:	0.01%, 0.05%, 0.1% (20,100, 200 mg/kg bw d)
Control group:	Yes [X]; No []; No data []; Concurrent no treatment [X]: Concurrent vehicle []: Historical []
Results:	There were no changes due to the administration of LAS in regard to growth, mortality, the weight of major organs, or histopathological findings. The intake of LAS was about 200 mg/kg bw d in the 0.1% group.
Method:	Groups of 20 male Wistar rats were given LAS in drinking water daily for 2 years
GLP.	Yes $\begin{bmatrix} 1 & \text{No} \\ \mathbf{X} \end{bmatrix}$? $\begin{bmatrix} 1 & \text{I} \\ \mathbf{X} \end{bmatrix}$
Test substance	LAS activity: 34 55%
Remarks.	Information as cited in the IPCS document
Reference:	 European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition. Tiba, S. 1972. Studies on the acute and chronic toxicity of linear alkylbenzene sulfonate. J. Food Hyg. Soc. Jpn. 16:66-71 (in Japanese);

Reliability:	 cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland. 4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(m)	
Species/strain:	Rhesus monkey (<i>Macaca mulatta</i>)
Sex:	Female []; Male []; Male/Female [X]; No data []
Exposure period:	28 days
Exposure period. Frequency of treatment	20 days
Dose:	30, 150, 300 mg/kg/day oral via gavage given simultaneously with 0.1.
2000	0.5, 1.0 mg/kg/day subcutaneous administration
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL:	150 mg/kg/day (oral) with 0.5 mg/kg/day (sc)
Results:	At 300 (oral) and 1.0 (sc) mg/kg/day, the monkeys vomited frequently and
	usually within 3 hours of administration. An increased frequency of loose
	of inquid factors was recorded for animals receiving 150 (oral) and 0.5 (sc) ma/kg . These effects are probably related to the inherent irritative effects.
	of LAS rather than its systemic toxicity Fibrosis of the injection sites was
	found among all the test group, the incidence and severity being dose
	related. Ophthalmoscopy, laboratory examination of blood and urine,
	organ weight analysis and histopathological investigation did not detect
	any further treatment-related responses.
Method:	Inree male and 3 female monkeys were given simultaneous oral and subsutaneous administration doese doily for 28 dows. Animals were
	observed for physical and behavioral signs of toxicity Analysis of blood
	biochemistry and urine were conducted. Monkeys were held in individual
	wall-mounted cages at a room temperature of 22 ⁺ /-1°C and normal
	daylight. Food consisted of 300 g dry diet and bread daily, and fresh fruit
	on alternate days. Tap water for drinking was freely available.
GLP:	Yes [] No [X] ? []
Test substance:	C ₁₀₋₁₃ LAS, activity: 20.5%
Remarks.	with 0.1 mg/kg/day (sc). However, based on the information provided in
	the article and reiterated above, the actual systemic NOAEL is considered
	to be 150 mg/kg/day (oral) with 0.5 mg/kg/day (sc). According to the
	authors, the three combined doses correspond to 100, 500 and 1000 times
	the estimated maximum human daily intake.
Reference:	Heywood, R., James, R.W., and Sortwell, R.J. 1978. Toxicology studies
	of linear alkylbenzene sulphonate (LAS) in mesus monkeys. 1.
	Toxicology 11:245-250
Reliability:	2 Valid with restrictions
(n)	
Species/strain:	Rat (Wistar)
Sex: A dministration:	Female []; Male [X]; Male/Female []; No data []
Aummisuation.	

Exposure period:	15 days
Frequency of treatment:	daily
Dose:	0.5 g applied 20 and 30% LAS solutions (about 286 and 427 mg/kg bw d)
Control group:	Yes []; No []; No data [];
	Concurrent no treatment []; Concurrent vehicle []; Historical []
LOAEL:	20% (286 mg/kg bw d) (lowest dose tested)
Results:	Body weight gain was suppressed in the 20% group and the body weight was decreased in the 30% group. An infiltrating, yellowish-reddish brown crust was observed 2-3 days in the 20% group, and at 1-2 days in the 30% group. At 4-6 days the crust was abraded and erosion occurred at the abraded site. Histological examinations of the application site revealed severe necrosis of the region from the epidermis cuticle to the upper layer of the dermis, severe infiltration of leukocytes in the necrotic site, diffuse inflammatory cell infiltration of all layers of the corium. No changes were observed in the tongue, but the oral mucosa revealed atrophy and slight degeneration of the epithelium. No systemic effects were observed
Method:	LAS was applied to the backs of the rats. On the 16^{th} day of the experiment, skin at the application site and the tissues of the tongue and oral mucosa (to examine the effects of licking) of the rats that received 30% were examined histologically.
GLP:	Yes [] No [X] ? []
Test substance:	LAS, activity: 99.9%
Remarks:	Information as cited in the IPCS document. Because of necrosis at the application site, it is not possible to know exactly how much LAS was absorbed. Effects were probably due to local effects, so the results are best described as a local LOAEL.
Reference:	 European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition. Sadai, M. and Mizuno, N. 1972. Effect of long term topical application of some anionic surfactants on the skin, oral mucous membrane, and tongue. Jpn Journal Dermatol. 82:207-221. (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.

5.5 GENETIC TOXICITY IN VITRO

A. BACTERIAL TEST

(a)	
Type:	Ames test
System of testing:	Salmonella typhimurium TA 1535, TA 1537, TA 1538, TA 98, TA 100
Concentration:	8 -5000 ug/plate
Metabolic activation:	With []; Without []; With and Without [X]; No data []
Results:	
Cytotoxicity conc:	With metabolic activation: $> 5000 \mu\text{g/plate}$
	Without metabolic activation: $> 5000 \mu g/plate$
Genotoxic effects:	+ ? -

Method:	With metabolic activation:[][][X]Without metabolic activation:[][][X]Directive 84/449/EEC, B.14Mutagenicity (Salmonella typhimurium - reverse mutation assay)" 1984
GLP: Test substance:	Yes [X] No [] ? [] Marlon A 390 (CAS #68411-30-3) C_{10-13} LAS, average alkyl chain length = C_{116} : activity 91 3%
Remarks: Reference:	Negative and positive controls used. Schoeberl, P. 1993a. Bestimmung der Mutagenitat von Marlon A 390 im Salmonella/Sauger-Mikrosomen-Mutagenitatstest nach Ames. Huels Final Report No. AM-93/12.
Reliability:	1 Valid without restriction
(b) Type: System of testing: Concentration:	Ames test Salmonella typhimurium TA 100, TA 98 10, 25, 50, 100 and 200 ug/plate
Metabolic activation: Results:	With []; Without []; With and Without [X]; No data []
Cytotoxicity conc:	With metabolic activation: $> 200 \ \mu g/plate$ Without metabolic activation: $> 200 \ \mu g/plate$
Genotoxic effects:	+ ? - With metabolic activation: [] [] [X] Without metabolic activation: [] [] [X]
Method: GLP: Test substance:	Ames test Yes [] No [X] ? [] C_{10-14} LAS, sodium salts (CAS#69669-44-9); average alkyl chain length
Remarks: Reference:	Not mutagenic Inoue, K., Sunakawa, T. and Takayama, S. 1980. Studies of <i>in vitro</i> cell transformation and mutagenicity by surfactants and other compounds. Fd. Cosmet. Toxicol. 18:289-296.
Reliability:	2 Valid with restrictions
(c) Type: System of testing:	Ames test
Concentration: Metabolic activation: Results:	up to 500 ug/plate With []; Without []; With and Without [X]; No data []
Cytotoxicity conc:	With metabolic activation: $> 500 \ \mu g/plate$ Without metabolic activation: $> 500 \ \mu g/plate$
Genotoxic effects:	+ ? With metabolic activation: [] [] [] Without metabolic activation: [] [] []
Method:	Ames test
GLP: Test substance:	Yes [] No [X] ? [] C_{10-14} LAS, sodium salts (CAS #69669-44-9); average alkyl chain length (based on LAS SIDS Consortium Survey, 2000) = C_{117} ; activity: 20.5%
Remarks: Reference:	Information as cited in IPCS documents. Not mutagenic 1) European Commission. 2000a. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition.

	2) Sunakawa, T., Inoue, K. and Okamoto, K. 1981. Studies on the
	mutagenicity of surfactants, mutagenicity of surfactants following
	activation with various liver homogenates (S-9) and mutagenicity in the
	presence of norharman. Hyg. Chem. 27:204-211. (In Japanese); Cited in
	IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene
	Sulfonates and Related Compounds. World Health Organization,
	Geneva, Switzerland.
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated
	by IPCS prior to inclusion in their criteria document.

(d)		
Type:	Bacillus subtilis recombination	assay
System of testing:	H17 (rec+) and M45 (rec-)	-
Concentration:	Up to 50 μg/plate	
Metabolic activation:	With []; Without []; With and	d Without [X] ; No data []
Results:		
Cytotoxicity conc:	With metabolic activation:	$> 50 \ \mu g/plate$
	Without metabolic activation:	$> 50 \ \mu g/plate$
Genotoxic effects:		+ ? -
	With metabolic activation:	[][][X]
	Without metabolic activation:	[][][X]
Method:	Bacillus recombination assay	
GLP:	Yes [] No [X] ? []	
Test substance:	C ₁₀₋₁₄ LAS, sodium salts (CAS	#69669-44-9); average alkyl chain length
	(based on LAS SIDS Consortiu	m Survey, 2000) = $C_{11.7}$; activity: 99.5%
Remarks:	Information as cited in IPCS do	ocument.
Reference:	1) European Commission. 2	000a. Benzenesulfonic acid, C_{10-13} -alkyl
	derivs., sodium salts. Year 200	0 CD-ROM edition.
	2) Inoue, IK. and Sunakawa, I	. 1979. Mutagenicity tests of surfactants.
	Jpn Fragrance J. 38:6/-/5 ((in Japanese); cited in: IPCS (1996);
	Environmental Health Criteria (I, A, S) and Balatad Common da	169: for Linear Alkylbenzene Sulfonates
Daliability	(LAS) and Related Compounds	aliability soore of 4 because the original
Reliability.	4 This study is assigned a lo	wiew However the study was evaluated
	by IPCS prior to inclusion in the	heir criteria document
	by it es prior to metasion in t	ien enteria document.
(e)		
Type:	Escherichia coli reverse mutatio	on assav.
System of testing:	WP23 uvr A	
Concentration:	Not specified	
Metabolic activation:	With []; Without []; With a	nd Without [X]; No data []
Results:		
Cytotoxicity conc:	With metabolic activation:	Not specified
	Without metabolic activation:	Not specified
Genotoxic effects:		+ ? -
	With metabolic activation:	[] [] [X]
	Without metabolic activation:	[] [] [X]
Method:	E. coli assay	
GLP:	Yes [] No [X] ? []	
Test substance:	C ₁₀₋₁₄ LAS, sodium salt; activity: 99.5%	
Remarks:	Information as cited in IPCS do	ocument.

1) European Commission. 2000a. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl
derivs., sodium salts. Year 2000 CD-ROM edition.
2) Inoue, I.K. and Sunakawa, T. 1979. Mutagenicity tests of surfactants.
Jpn Fragrance J. 38(7)(5):67-75 (in Japanese); cited in: IPCS (1996);
Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates
(LAS) and Related Compounds. WHO, Geneva, Switzerland.
4 This study is assigned a reliability score of 4 because the original
report was not available for review. However, the study was evaluated
by IPCS prior to inclusion in their criteria document.

B. NON-BACTERIAL IN VITRO TEST

Туре:	Transformation test with SHE-cells	
System of testing:	Syrian hamster embryo (SHE) cells	
Concentration:	up to 50 ug/mL	
Metabolic activation:	With []; Without [X]; With and Without []; No data []	
Results:		
Cytotoxicity conc:	Without metabolic activation: 50 µg/mL	
Genotoxic effects:		
	+ ? -	
	Without metabolic activation: [] [] [X]	
Method:	Cell cultures were prepared and plated in 75 cm ² flasks containing 20 mL of culture medium. On day 5, target cells were trypsinized and a suspension of target cells was added to the solution plated on complete medium. Plates were dosed on day 6. Nine dishes were used for each dose level. On day 14, the cultures were fixed, stained, and examined to count normal and transformed colonies.	
GLP:	Yes [] No [X] ? []	
Test substance:	C_{10-14} LAS, sodium salts (CAS #69669-44-9); average alkyl chain length (based on LAS SIDS Consortium Survey, 2000) = $C_{11,7}$; activity: 22.2%	
Remarks:	LAS did not produce transformation at any of the doses tested.	
Reference:	Inoue, K., Sunakawa, T., and Takayama, S. 1980. Studies of <i>in vitro</i> cell transformation and mutagenicity by surfactants and other compounds. Fd. Cosmet Toxicol 18:289-296	
Reliability:	2 Valid with restrictions	

5.6 GENETIC TOXICITY IN VIVO

(a) T	
Type:	Mammalian bone marrow cytogenetic assay
Species/strain:	mouse: ICR: JCL
Sex:	Female []; Male [X]; Male/Female []; No data []
Administration:	gavage
Exposure period:	5 days and 1 day
Doses:	200, 400, 800 mg/kg bw d
Results:	There was no significant difference in the incidence of chromosomal
	group.
Control Group:	Concurrent no treatment, positive and historical controls were used.

Method:	Chromosomal aberrations were examined 6, 24, 48 hours after administration. Mytomycin C was used as a positive control and appropriately induced severe chromosomal aberrations
GLP.	Yes [] No [X] ? []
Test substance:	$C_{10,14}$ LAS sodium salt (CAS #69669-44-9): average alkyl chain length
i est substance.	(based on LAS SIDS Consortium Survey $2000 = 11.7$
Remarks:	Besides the pure LAS, commercial preparation containing 19% LAS and another containing 17.1% LAS were given to mice as single doses only by gavage at 800, 1600 or 3200 mg/kg bw d and 1000, 2000 or 4000 mg/kg bw d, respectively. The highest doses were 50% of the respective LD ₅₀ values. No significant differences in the incidence of chromosomal aberrations were observed in any LAS treatment relative to the controls
	Information as cited in the IPCS document
Reference:	 European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition. Inoue, K., Shibata, T., Hamano, Y., Oda, Y., Kuwano, A., Yamamoto, H., Mitsuda, B. and Kunita, N. 1977. <i>In vivo</i> cytogenetic tests of some synthetic detergents in mice. Ann Res. Osaka Prefect Inst. Public Health. 8:17-24 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document
(b)	
Type:	Mammalian bone marrow cytogenetic assay
Species/strain:	rat (Wistar, SD); mouse (ICR)
Sex:	Female []; Male [X]; Male/Female []; No data []
Administration:	oral feed
Exposure period:	9 months
Doses:	0.9% (450 mg/kg bw d in rats; 1170 mg/kg bw d in mice)
Results:	There were no significant differences in the incidences of chromosomal
	aberrations between the experimental and control groups.
Method:	Groups of 5 male Wistar rats, Sprague-Dawley rats, and ICR mice were given a diet containing 0.9% LAS for 9 months after which the chromosomes of the bone marrow cells were examined.
GLP:	Yes [] No [X] ? []
Test substance:	LAS
Remarks:	Information as cited in the IPCS document.
Reference:	 European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition. Masabuchi, M., Takahashi, A., Takahashi, O. and Hiraga, K. 1976. Cytogenetic studies and dominant lethal tests with long term administration of butylated hydroxytoluene (BHT) and linear alkylbenzene sulfonate (LAS) in mice and rats. Ann. Rep. Tokyo Metrop. Res. Lab. Public Health. 27:100-104 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.

(c)	
Type:	Dominant lethal assav
Species/strain:	mouse (ICR: JCL)
Sex:	Female []: Male [X]: Male/Female []: No data []
Administration:	oral feed
Exposure period:	9 months
Doses:	0.6% (300 mg/kg bw d)
Results:	There were no significant differences in fertility, the mortality of ova and
Method:	embryos, the number of surviving fetuses, or the index of dominant lethal induction between the experimental groups and the control group. Seven male mice received LAS in the diet for 9 months. Each of the male mice was then mated with 2 female mice that had not been given LAS.
	The pregnant mice were laparotomized on day 13 of gestation to determine the numbers of luteal bodies, implantations, surviving fetuses, and dead fetuses.
GLP [.]	Yes $[1 \text{ No} [\mathbf{X}] ? [1]$
Test substance	LAS
Remarks:	Information as cited in the IPCS document.
Reference:	 European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition. Masabuchi, M., Takahashi, A., Takahashi, O. and Hiraga, K. 1976. Cytogenetic studies and dominant lethal tests with long term administration of butylated hydroxytoluene (BHT) and linear alkylbenzene sulfonate (LAS) in mice and rats. Ann Rep. Tokyo Metrop.
Reliability:	 Res. Lab. Public Health. 27:100-104 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland. 4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(d)	
Type:	Micronucleus assay
Species/strain	mouse: (ddy)
Sex:	Female []: Male [X]: Male/Female []: No data []
Administration:	Intraperitoneal injection
Exposure period:	single dose
Doses:	100 mg/kg bw
Results:	There were no differences in the incidences of polychromatic erythrocytes
	with micronuclei in the bone marrow cells between the treated group and
	the control group.
Method:	Three male ddy mice were each given a single i.p. injection of 100 mg/kg
	bw LAS.
GLP:	Yes [] No [X] ? []
Test substance:	LAS
Remarks:	Information as cited in the IPCS document.
Reference:	 European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition. Kishi, M., Satoh, S., Horiguchi, Y. and Ito, K. 1984. Effects of surfactants
	on bone marrow cells. Bull. Kanagaw Public Health Lab. 14:57-58. (In Japanese); cited in: IPCS (1996); Environmental Health Criteria 169:

Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
Reliability: 4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.

5.7 CARCINOGENICITY

(a)	
Species/strain:	Rat: Charles River
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	oral feed
Exposure period:	2 years
Frequency of treatment:	continuous in feed
Doses:	0.02, 0.1, 0.5% (10, 50, 250 mg/kg bw d)
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical [X]
Results:	Gross examination of all animals for pathology did not reveal any abnormalities. No consistent dietary induced changes that could be considered a toxic response were observed. Animals that showed significant loss of weight, development of tumors, or other evidence of abnormalities were sacrificed and tissues examined. The incidence of tumors and the common incidental diseases were similar in all dieting
	groups.
Method:	Four groups of Charles River weanling rats, divided by sex, were given 0.5, 0.1, and 0.02% LAS in their food for 2 years. Following completion of those studies, five male and five female rats from each of the parental groups (F_{1b} and F_{2b}) and all survivors were selected for necropsy. Body weight and organ to body weight ratios were recorded, and routine hematology and histology were performed. Weanling animals for the F_{3a}
CI D.	Ves [] No [V] 2 []
ULLE. Test substance:	$[C_{1}, C_{2}] = [C_{2}, C_{2}] = [C_{$
Reference:	Buehler, E.V., Newmann, E.A., and King, W.R. 1971. Two year feeding and reproduction study in rats with linear alkylbenzene sulfonate (LAS). Toxicol. Appl. Pharmacol. 18:83-91.
Reliability:	2 Valid with restrictions
(b)	
Species/strain:	Rat/Wistar
Sex:	Female []; Male [X]; Male/Female []; No data []
Administration:	
Exposure period.	2 years
Doses:	0.01% 0.05% 0.1% (20.100, 200 mg/kg by d)
Control group:	V_{es} [Y]: No [1]: No data [1]:
Results:	Concurrent no treatment [X]; Concurrent vehicle []; Historical [] There were no changes due to the administration of LAS in regard to growth, mortality, the weight of major organs, or histopathological findings. The intake of LAS was about 200 mg/kg by d in the 0.1%
	group. There is no description of tumors.

Method:	Groups of 20 male Wistar rats were given LAS in drinking water daily for 2 years.
GLP [.]	Yes [] No [X] ? []
Test substance	LAS activity: 34 55%
Remarks:	Information as cited in the IPCS document
Reference:	1) European Commission 2000a Benzenesulfonic acid $C_{10,12}$ -alkyl
	 derivs., sodium salts. Year 2000 CD-ROM edition. 2) Tiba, S. 1972. Studies on the acute and chronic toxicity of linear alkylbenzene sulfonate. J. Food Hyg. Soc. Jpn. 16:66-71 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland
Reliability:	Λ This study is assigned a reliability score of Λ because the original
Renability.	report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document
(c)	
Species/strain:	Rat/Wistar
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	drinking water
Exposure period:	up to 26 months
Frequency of treatment:	Daily
Doses:	0.1% (140 mg/kg bw d)
Control group:	Yes [X] ; No []; No data []; Concurrent no treatment []; Concurrent vehicle []; Historical []
Results:	The administration of LAS had no effect on the intake of water, mortality, body weight gain, or general condition. In pathological examination, looseness, atrophy, and fatty change of the hepatic cells in the liver were found in the experimental group at 6 months. The experimental group showed significant increases in GOT, GTP and bilirubin at 6 months and thereafter. In haematological examinations no effects due to LAS were observed.
Method:	A group of 62 male and 62 female rats were given drinking water treated with LAS and a control group of 37 male and 37 female rats were given pure water. Five to 12 of the rats in the experimental group and 3 to 12 rats in the control group at 3, 6, 12, and 18 months, respectively, and all surviving rats between 24 and 26 months, were sacrificed for pathological, biochemical, and haematological examinations.
GLP:	Yes [] No [X] ? []
Test substance:	LAS; mean molecular weight 348; average alkyl chain length = $C_{12.0}$; activity: 38.74%
Remarks:	Information as cited in the IPCS document.
Reference:	1) European Commission. 2000a. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derive sodium salts. Year 2000 CD ROM edition
	2) Endo T Furuido V Namie K Vamamoto N Hasunuma H and
	Ueda, K. 1980. Studies of the chronic toxicity and teratogenicity of synthetic surfactants. Ann. Rep. Tokyo Metrop. Res. Inst. Environ. Prot. 236-246 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 160; Linger Allgulaenzang Sulfanates (LAS) and Balatad
	Compounds. WHO, Geneva, Switzerland.

Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(d)	
Species/strain:	Rat/Wistar
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	oral feed
Exposure period:	1, 3, 6, 24, or more months
Frequency of treatment	: Daily
Doses:	0.04, 0.16, 0.6% (20, 80, 300 mg/kg bw d)
Control group:	Yes [X] ; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
Results:	The 0.6% group showed slight increases in the weight of liver and cecum,
	and increased activity of GPT and ALP in serum. LAS administration had
	no adverse effects upon the intake of food, body weight gain, general
	condition, mortality or mean survival. At one month, proliferation of
	hepatic cells in the liver and slight swellings of the renal tubes and
	narrowing of the tubular lumen in the kidneys were found in the 0.16%
	and 0.6% groups. These findings later disappeared, and are considered to
	be adaptation phenomena to the administration of LAS. There were no
	nistopathological lesions attributable to LAS administration in any of the
	organs in rats led for 24 months of more. Various types of tumors were
	LAS were not present. Therefore the authors concluded that the diet
	containing LAS at a concentration of 0.6% (300 mg/kg bw d) did not have
	any adverse effects on rats
Method [.]	Groups of 50 male and 50 female rats were given diets containing LAS at
	0.04, 0.16 and 0.6%. In each group, 5 rats of each sex were fed for 1, 3, 6.
	and 12 months, respectively, and groups of 15 rats of each sex were fed
	for 24 months or more. Detailed histopathological examinations were
	made on the rats.
GLP:	Yes [] No [X] ? []
Test substance:	C ₁₀₋₁₄ LAS; C ₁₀ 10.6%, C ₁₁ 34.1%, C ₁₂ 27.7%, C ₁₃ 19.0%, C ₁₄ 8.7%;
	average alkyl chain length = $C_{11.8}$; mean molecular weight 345.8
Reference:	1) European Commission. 2000a. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl
	derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Fujii, T., Sakamoto, Y., Abe, Y., Mikurita, H., Yuzawa, K. and Hiraga,
	K. 1977. Pathological examination of rats fed with linear alkylbenzene
	sulfonate for their lifespan. Ann. Rep. Tokyo Metrop. Res. Lab. Public
	Health. 28:85-108 (in Japanese); cited in: IPCS (1996); Environmental
	Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related
	Compounds. WHO, Geneva, Switzerland.
	3) Yoneyama, M., Masubuchi, M., Oishi, S., Takahashi, O., Ikawa, M.,
	Yoshida, S., Olshi, H., Mikuriya, H., Yuzawa, K. and Hiraga, K. 19//.
	Subacule toxicity of linear alkyloenzene sufformate. Alli, Rep. Tokyo Matron Dag Lab Dublia Haalth 28:72 84 (in Japanese): aited in: IDCS
	(1006): Environmental Health Criteria 160: Linear Alleybourgene
	Sulfonates (LAS) and Related Compounds WHO Geneva Switzerland
Reliability:	4 This study is assigned a reliability score of A because the original
Kondonity.	report was not available for review However the study was evaluated
	by IPCS prior to inclusion in their criteria document
	of it co prior to inclusion in their effectia document.

5.8 TOXICITY TO REPRODUCTION

(a)	
Type:	Fertility []; One-generation study []; Two-generation study [];
	Other [X]: 3-generation reproduction study
Species/strain:	Rat: Charles River
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	oral feed
Exposure period:	2 years
Frequency of treatment	continuous in feed
Premating	
exposure period:	male: 84 days, female: 84 days
Duration of the test:	3 generations
Doses [.]	0.02, 0.1, 0.5% (14, 70, 350 mg/kg bw d)
Control group	Yes $[\mathbf{X}]$. No $[-1]$: No data $[-1]$:
Control Broup.	Concurrent no treatment [X]: Concurrent vehicle [1]: Historical [X]
NOAFL Parental	= 0.5% (350 mg/kg by d)
NOAEL F1 Offspring	= 0.5% (350 mg/kg bw d)
NOAEL F2 Offspring:	= 0.5% (350 mg/kg bw d) = 0.5% (350 mg/kg bw d)
Pagulta:	Constal reproduction including fartility gostation parturition reproduct
Results.	visibility lastetion and next warning growth was normal for all test
	viability, factation, and post-wearing growth was normal for an test
	groups and did not deviate from the controls in each generation. No gross
	ability adverse effects due to the test
M - 411-	material were noted in the naematology and pathology.
Method:	Na-LAS (chain length distribution C_{10-14}) was red for 84 days to 4 groups
	of weaning rats (3 dose levels, plus control), each dose consisting of 50
	animals each of both sexes (P_0 -generation). When the P_0 generation was
	107-112 days old, 20 females from each dose group were mated with 20
	males from the same group and maintained together for 17 days. The first
	litters of each generation (F_{la} - and F_{2a} -generation) were sacrificed at 21
	days of age. Ten days after the final litter was sacrificed, all females were
	remated with different males from the same group to obtain the F_{1b}
	generation. From the F_{lb} -generation, 20 males and females of each group
	were selected at weaning to continue their respective diets and to be used
	for further reproduction studies. Reproduction studies on the F_{1b} and F_{2b}
	generations were started when the rats were 80 to 85 days old, and were
	continued until the F_{3b} generation was weaned.
GLP:	Yes [] No [X] ? []
Test substance:	Sodium salt LAS (C_{10-14}), activity: 98.1% on an anhydrous basis (41.9%)
	active)
Reference:	Buehler, E.V., Newmann, E.A., and King, W.R. 1971. Two year feeding
	and reproduction study in rats with linear alkylbenzene sulfonate (LAS)
	Toxicol Appl Pharmacol 18:83-91
Reliability.	2 Valid with restrictions
Rendonity.	
(h)	
(0)	Fartility []: One generation study []: Two generation study []:
rype.	Other [V] Three generation study [], 1 wo-generation study [],
Supposed at the interest of the second secon	Charles Diver CD strain rate
Species/strain:	Changes Kiver CD Strain fails
SCX.	remare [], ware [], ware/remare [A], no data []
1 0005	100

Administration:	diet
Exposure period:	up to > 1 year
Frequency of treatment	continuous in diet
Premating exposure	
period:	male: 60 days, female: 60 days
Duration of the test:	3 generations
Doses:	0.08 0.4 and 2.0% continuously administered throughout the three
D 0505.	generations (40, 200 and 1000 mg/kg by d CI D [6.8, 3.4 and 170 mg/kg
	bw d I AS]
Control group:	Ves [V]: No []: No data []:
Control group.	ies [A], No [], No data [],
	Concurrent no treatment [X]; Concurrent venicle []; Historical []
NOAEL Parental:	$1/0 \text{ mg/kg bw d LAS (1000 \text{ mg/kg bw d CLD)}}$
NOAEL FI Offspring:	170 mg/kg bw d LAS (1000 mg/kg bw d CLD)
NOAEL F2 Offspring:	170 mg/kg bw d LAS (1000 mg/kg bw d CLD)
Results:	General parental toxicity: There were no signs of malreaction to treatment
	among parents and the incidence of sporadic deaths and total litter losses
	were unrelated to dosage. Pregnancy rate and the duration of gestation
	were unaffected. Food consumption and bodyweight changes showed no
	consistent relationship to dosage over the three generations.
	Toxicity to offspring: Examining litter parameters, statistically significant
	differences were occasionally observed but they showed no consistent
	dosage related trends over the three generations and were considered to be
	unrelated to treatment. The incidence of malformations was unaffected by
	treatment Additional organ weight analysis historiathology and skeletal
	staining of representative young from the F_{22} generation revealed no
	shanning of representative young from the 1 _{3b} generation revealed no
Mathad	CLD was administered in the dist of the rate and new betches of dist were
Method.	CLD was administered in the diet of the fats and new batches of diet were
	prepared each week. Males and remains of each generation (F_0 , F_{1b} , and
	F_{2b}) were kept on their respective diets for 60 days. The mating period for
	the first litter lasted 19 days. After the weaning of the first litters,
	approximately 10 days, the animals were re-mated and a second litter was
	produced. From the second litters of the initial (F_0) and second (F_{1b})
	generations, 10 males and 20 females were selected from each group at
	weaning in order to form the second and third (F _{2b}) generations,
	respectively.
	In the parent animals, observations of signs of reaction, mortalities, food
	consumption, bodyweight change, pregnancy rate, mating performance,
	and gestation period were made throughout the study. As soon as possible
	(< 12 hours) after birth, all young were counted, identified by toe
	amputation and examined for external abnormalities. Un to day 21 post
	nartum animals were examined daily for dead and abnormal young
	Voung of the first litters and surplus young of the second litters were
	roung of the first inters and surplus young of the second inters were
	sacrificed and examined for abnormanities internary and externary. Rats
	of the F_{3b} generation were killed at 3 weeks old and were also examined
	internally and externally for abnormalities. For the F_{3b} generation, tissue
	trom the brain, liver, heart, pituitary, spleen, thyroid, kidneys, thymus,
	adrenals, lungs, gonads, pancreas, bladder, bone, bone marrow, sections of
	the stomach, and sections of the small and large intestines were removed
	and examined.
GLP:	Yes [] No [X] ? []
Test substance:	Commercial Light Duty liquid detergent (CLD) containing 17% LAS and
	7% alkyl ether sulfate (Lion Oil and Fat Co., Ltd.)
	· · · · · · · · · · · · · · · · · · ·

Reference:	Palmer, A.K., Cozens, D.D., Batham, P., and Cherry, C.P. 1974. Effect of CLD on reproductive function of multiple generations in the rat. Final Report Report No LF010/731029
Reliability:	2 Valid with restrictions
(c)	
Type:	Fertility []; One-generation study []; Two-generation study []; Other [X]: 4-generation reproduction study
Species/strain:	Rat/Wistar
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	drinking water
Frequency of treatment	: Daily
Duration of the test:	4 generations
Doses:	0.1% (70 mg/kg bw d)
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Parental:	70 mg/kg bw d
NOAEL F1 Offspring:	70 mg/kg bw d
NOAEL F2 Offspring:	70 mg/kg bw d
Results:	The administration of LAS had no adverse effects on fertility, parturition,
	gestation period, or lactation in any of the generations.
Method:	Two groups of 20 rats of both sexes were given water containing LAS and
	the reproductive performance was investigated for 4 generations. Five to
	10 rats of both the control and the experimental group were sacrificed at
	12 weeks for pathological examinations. For successive reproduction, 15
GT 7	males and 15 females produced by the first mating of rats were used.
GLP:	Yes [] No [X] ? []
Test substance:	LAS; mean molecular weight 348; average alkyl chain length = $C_{12.0}$.
Remarks:	Information as cited in the IUCLID Data Set and the IPCS document.
Reference:	1) European Commission. 2000a. Benzenesulfonic acid, C_{10-13} -alkyl
	derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Endo, T., Furuido, Y., Namie, K., Yamamoto, N., Hasunuma, H. and
	Ueda, K. 1980. Studies of the chronic toxicity and teratogenicity of
	synthetic surfactants. Ann. Rep. Tokyo Metrop. Res Inst. Environ. Prot.
	236-246 (in Japanese); cited in: IPCS (1996); Environmental Health
	Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related
D 11 1 11	Compounds. WHO, Geneva, Switzerland.
Reliability:	4 This study is assigned a reliability score of 4 because the original
	report was not available for review. However, the study was evaluated
	by IPCS prior to inclusion in their criteria document.

5.9 DEVELOPMENTAL TOXICITY/ TERATOGENICITY

(a)	
Species/strain: Rat (Wistar) and Rabbit (NZW)	
Sex: Female [X]; Male []; Male/Female []; No data []	
Administration: drinking water	
Exposure period: day 6-15 of pregnancy (rat); day 6-18 of pregnancy (rat	obit)
Frequency of treatment: Daily	
Doses: 0.1% (70 mg/kg bw d in rat; 250 mg/kg bw d in rabbit)	
Control group: Yes [X]; No []; No data [];	

	Concurrent no treatment []; Concurrent vehicle []; Historical []
NOAEL Maternal	
Toxicity:	Rat $> 0.1\%$ (383 mg/rat); rabbit = 0.1% (3030 mg/rabbit).
NOAEL teratogenicity:	0.1% for rat.
LOAEL teratogenicity.	0.1% (3030 mg/rabbit)
Results:	The only effect on the dams was a slight inhibition of body weight gain in
results.	the rabbits The litter parameters of both species did not show any
	significant differences from those of the controls. Delayed assification
	was observed in rabbits, but there was no increase in malformations in
	was observed in fabbits, but there was no increase in manormations in
M - 411.	enther the fabbils of the fals. $I = A C = a + b + b + b + b + b + b + b + b + b +$
Method:	LAS was given to 40 rats (20 controls) and 22 rabbits (11 controls) from $1 - (1 - 1)$
	day 6 to 15 (rats) and day 6 to 18 (rabbits) of pregnancy, respectively.
GLP:	Yes [] No [X] ? []
Test substance:	LAS; activity: 38.74%; average alkyl chain length = $C_{12.0}$; (mean
	molecular weight 348)
Remarks:	Information as cited in the IUCLID Data Set and the IPCS document.
Reference:	1) European Commission. 2000a. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl
	derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Endo T Furuido Y Namie K Yamamoto N Hasunuma H and
	Ueda K 1980 Studies of the chronic toxicity and teratogenicity of
	synthetic surfactants Ann Ren Tokyo Metron Res Inst Environ Prot
	236 246 (in Japanese): cited in: IPCS (1006): Environmental Health
	Criteria 160: Linear Allguberzene Sulfeneter (LAS) and Polated
	Criteria 109. Linear Arkyloenzene Suntonales (LAS) and Related
D 1' 1 '1'	Compounds. WHO, Geneva, Switzenand.
Reliability:	4 This study is assigned a reliability score of 4 because the original
	report was not available for review. However, the study was evaluated
	by IPCS prior to inclusion in their criteria document.
(b)	
Species/strain:	Rat: CD
Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	gavage
Duration of the test:	sacrifice at day 20 of gestation
Exposure period:	day 6 - 15 of pregnancy
Frequency of treatment	:daily
Doses:	0.2, 2, 300, 600 mg/kg bw d
Control group	Yes $[\mathbf{X}]$: No $[-1]$: No data $[-1]$:
Control Broup.	Concurrent no treatment [X]: Concurrent vehicle []: Historical []
NOAEL Maternal	concurrent no treatment [A], concurrent venicic [], instoricar []
NOALL Material	200 mg/kg hu
NOAEL tanata anniaitan	S00 mg/kg Uw
NOAEL teratogenicity:	600 mg/kg bw
Results:	Maternal toxicity:
	Body weight gain was retarded in the highest dose group from the start of
	dosing and showed partial recovery toward the end of the dosing period.
	One animal died in this group but it could not be conclusively related to
	treatment. The toxic effects were associated with disturbance of the
	gastrointestinal tract. Pregnancy rate was comparable at all dosages.
	Teratogenicity:
	No differences were observed among dose groups and the control group
	with respect to number of litters, viable young, litter weight, foetal weight,
	embryonic deaths, implantations, corpora lutea, pre- and post implantation
	embryonic loss, major malformations, minor visceral or embryonic loss.

	major malformations, minor visceral or skeletal anomalies or incidence of pups with extra ribs.
Method:	Animals received doses by gavage daily from days 6-15 of gestation.
	Twenty animals per dose group were used.
GLP:	Yes [] No [X] ? []
Test substance:	LAS
Reference:	Palmer, A.K., Readshaw, M.A. and Neuff, A.M. 1975a. Assessment of the teratogenic potential of surfactants (Part I) – LAS, AS and CLD. Toxicology 3:91-106.
Reliability:	2 Valid with restrictions
(c)	
Species/strain:	Charles River CD strain rat
Sex:	Female [X]; Male []; Male/Female []; No data []

species/strain.	Charles River CD strain fat
Sex:	Female [X] ; Male []; Male/Female []; No data []
Administration:	Oral in distilled water
Duration of the test:	20 days
Exposure period:	day 6 to day 15 of pregnancy
Frequency of treatment:	daily
Doses:	0.2, 2.0, 300 and 600 mg/kg
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal:	300 mg/kg
NOAEL teratogenicity:	300 mg/kg
Results:	Maternal toxicity: Parent animals were observed daily. Change in
	bodyweight was not affected by treatment at 0.2, 2.0, and 300 mg/kg, but
	treatment at 600 mg/kg was associated with retarded weight gain and a
	transient diarrhea following initiation of treatment. The pregnancy rate
	was comparable at all dosages.
	Pregnancy/litter data: The litter parameters assessed included litter size,
	fetal loss and litter weight. These parameters were not significantly
	affected by any dosage. Mean pup weights were statistically higher at 0.2,
	2.0 and 300 mg/kg.
	Teratogenicity: Embryonic and fetal development were assessed by the
	incidence of major malformations. The incidence of minor visceral
	anomalies was unaffected by treatment at any dosage. The distribution of
	skeletal variants were not statistically significant with the exception of a
	marginal retardation of sternebral ossification at 600 mg/kg.
Method:	After overnight mating, the rats were randomly allocated to five groups
	which included one control group and four different treatment groups.
	LAS was prepared daily as a series of graded aqueous solutions. Animals
	in all groups were dosed orally at the standard volume of 1.0 mL/100 g.
	Control animals were dosed in a similar manner with distilled water used
	as the vehicle. The dams were observed daily for signs of toxicity and
	weighed on days 1, 3, 6, 10, 14, 17 and 20 of pregnancy. On day 20, the
	rats were killed by CO ₂ euthanasia. Their ovaries and uterine contents
	were examined immediately for number of copora lutea, number of viable
	young, number of resorption sites, litter weight, and fetal abnormalities.
GLP:	Yes [] No [X] ? []
Test substance:	LAS (Na salt) as a slurry containing 64.0% w/v of active ingredient (Lion
	Oil and Fat Co., Ltd.); average alkyl chain length (based on LAS SIDS
	Consortium Survey, 2002) = $C_{11,7,12,3}$.

Reference:	Palmer, A.K. and Lovell, M.R. 1971a. Effect of LAS detergent on pregnancy of the rat. Report No. 4331/71/487.
Reliability:	2 Valid with restrictions
(d)	
Species/strain:	Charles River Specific Pathogen Free mice of the CD-1 strain
Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	Oral in distilled water
Duration of the test:	17 days
Exposure period:	day 6 to day 15 of gestation
Frequency of treatment	i daily
Doses:	0.2, 2.0, 300, 600 mg/kg
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal:	2.0 mg/kg
NOAEL teratogenicity	. 600 mg/kg
Results:	Maternal toxicity. After examining parent animals, treatment at 300 and 600 mg/kg uses linked with increased mortality (259/ and 009/
	boo mg/kg was miked with increased mortality (35% and 90%
	voung survived to termination. Autopsy revealed the consistent
	occurrence of tympanites sometimes associated with gastritis
	Pregnancy/litter data: The litter parameters were assessed by litter size
	fetal loss and litter weight none of which were significantly affected by
	treatment at any dosage. Mean pup weight was increased at 0.2 and 2.0
	mg/kg.
	Teratogenicity: Embryonic and fetal development was assessed by the
	incidence of major malformations and minor visceral anomalies and the
	distribution of skeletal variants. Any malformations and anomalities
	observed were not dose related. Development was not significantly
	affected at any dosage.
Method:	After overnight mating, the mice were randomly allocated to five groups
	which included one control group and four different treatment groups.
	LAS was prepared daily as a series of graded aqueous solutions. Animals
	in all groups were dosed orally at the standard volume of $0.06 \text{ mL}/10 \text{ g}$.
	Control animals were dosed in a similar manner with distilled water used
	as the vehicle. The dams were observed daily for signs of toxicity and
	weigned on days 1, 3, 6, 10, 14, and 17 of pregnancy. On day 17, the
	mice were killed by cervical dislocation. Their uterine contents were
	sites litter weight and fetal abnormalities
CI D.	Sites, fitter weight, and retai abnormanities. V_{es} [1] No [Y] 2 [1]
OLI . Test substance:	$I \subseteq [1 \otimes [1 \otimes [X]] : [1 \otimes [X]] : [1 \otimes [X]] = I \subseteq [X]$
Test substance.	Oil and Fat Co. Ltd.): average alkyl chain length (hased on LAS SIDS
	Consortium Survey $2002 = C_{11,7,12,2}$
Reference:	Palmer A K and Lovell M R 1971b Effect of LAS detergent on
	pregnancy of the mouse Report No 4330/71/486
Reliability:	2 Valid with restrictions
j.	
(e)	
Species/strain:	Mouse/CD-1
Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	gavage

Duration of the test:	sacrifice at day 17 of pregnancy
Exposure period:	days 6 - 15 of pregnancy
Frequency of treatment:	daily
Doses:	0.2, 2, 300, 600 mg/kg bw d
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal	
Toxicity:	2 mg/kg bw d
NOAEL teratogenicity:	300 mg/kg bw d
Results:	Maternal toxicity:
	Among parent animals treatment at 300 and 600 mg/kg bw d was
	associated with increased mortality (35% and 90% respectively). At 300
	mg/kg bw d weight gain was retarded only during the first four days. No
	assessment could be made at 600 mg/kg bw d, due to the high mortality
	rate. Necropsy revealed a ubiquitous occurrence of tympanites.
	sometimes associated with gastritis. Pregnancy rate was essentially
	comparable for all groups.
	Teratogenicity:
	At doses with no maternal toxicity no differences were observed among
	the dose group and the control group with respect to number of litters
	viable voung litter weight foetal weight embryonic deaths implantations
	and post implantation embryonic loss At these doses the incidences of
	major malformations and minor abnormalities were not affected. At doses
	with maternal toxicity there was an increased foetal loss and reduced litter
	size due almost entirely to total litter loss which was considered to be a
	secondary effect due to the maternal toxicity. The incidences of major
	malformations was not affected: minor skeletal or visceral anomalies were
	increased at 300 mg/kg
Method [.]	Twenty female mice were administered 0.2 2.0 300 or 600 mg/kg bw of
	LAS by gavage at days 6-15 of gestation All animals were sacrificed at
	day 17 of pregnancy
GLP	Yes [] No [X] ? []
Test substance:	
Remarks.	The maternal NOAFL of 2 mg/kg bw d is considered very conservative
Remarks.	because the range $(2-300 \text{ mg/kg bw d})$ was too wide
Reference:	Palmer A K Readshaw M A and Neuff A M 1975a Assessment of
Reference.	the teratogenic notential of surfactants (Part I) $-$ LAS AS and CLD
	Toxicology 3.91-106
Reliability:	2 Valid with restrictions
Rendonity.	2 valid with restrictions
(f)	
Species/strain	New Zealand white rabbit
Sex:	Female [X]: Male []: Male/Female []: No data []
Administration.	Gavage
Exposure period	day 6 to 18 of pregnancy
Exposure period.	· Daily
Duration of the test:	sacrifice at day 29 of pregnancy
Doses.	0.2.2.300.600 mg/kg
Control Group	Yes: concurrent
NOAEL maternal	
toxicity.	2 mg/kg hw
NOAEL teratogenicity	2 mg/kg hw
i or includementy.	

GLP:	Yes [] No [X] ? []
Test substance:	LAS
Results:	Maternal toxicity:
	At 300 and 600 mg/kg severe maternal toxicity was observed resulting in
	body weight loss and associated with diarrhoea, anorexia, and cachexia prior
	to death.
	Teratogenicity:
	At doses with no maternal toxicity, no differences were observed among
	the dose groups and the control group with respect to number of litters,
	viable young, litter weight, foetal weight, embryonic deaths, implantations
	and post implantation embryonic loss. At these doses the incidences of
	major malformations and minor abnormalities were not affected. Higher
	doses resulted in total litter which was considered to be a secondary effect
	due to the maternal toxicity. Since there were no survivors,
	malformations and anomalies were not assessed at these doses.
Remarks:	Information as cited in the IUCLID Data Sheet and the IPCS document.
Reference:	Palmer, A.K., Readshaw, M.A. and Neuff, A.M. 1975a. Assessment of
	the teratogenic potential of surfactants (Part I) – LAS, AS and CLD.
	Toxicology 3:91-106.
Reliability:	2 Valid with restrictions
(g)	
Species/strain:	New Zealand White rabbit
Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	intragastric intubation
Duration of the test:	29 days
Exposure period:	day 6 to day 18 of pregnancy
Frequency of treatment	:daily
Doses:	0.2, 2.0, 300, 600 mg/kg
Control group:	Yes [X] ; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal	
Toxicity:	2.0 mg/kg
NOAEL teratogenicity:	2.0 mg/kg
Results:	Maternal toxicity: Daily assessment of bodyweight change and pregnancy
	rate determined that at 0.2 and 2.0 mg/kg the treatment did not adversely
	affect parent animals. At 300 and 600 mg/kg parent animals showed signs
	of severe anorexia, diarrhoea, weight loss and death. Respective mortality
	rates were 85 and 100% and autopsy consistently revealed changes in the
	gastrointestinal tract.
	Pregnancy/litter data: The influence of maternal toxicity restricted
	assessment of effect on litter parameters to animals treated at 0.2 and 2.0
	mg/kg. At these two dosages there were no adverse effects on litter
	parameters, as assessed by litter size and fetal loss, litter and mean pup
	weights.
	Teratogenicity: Also at these two dosages there were no adverse effects on
	embryonic and tetal development, as assessed by the incidence of major
	and minor malformations, minor anomalies and skeletal variants.
Method:	I hirteen rabbits were mated on a one-to-one basis with males of proven
	tertility. The does were then injected intraveneously with 10 i.u.
	Internizing hormone to ensure that ovulation occurred. The rabbits were
	identified by an ear tag and allocated to one control group and four

	treatment groups. LAS was prepared daily and administered by intragastric intubation by a series of graded solutions in distilled water so that all animals were dosed at the standard volume of 4 mL/kg. Control animals were dosed at the same rate with distilled water as the vehicle. The parent animals were observed daily for signs of toxicity and weighed on days 1, 6, 10, 14, 21, and 28. On day 29, the animals were killed by cervical dislocation and immediately examined to determine the numbers and uterine disposition of young and resorption sites. The number of corpora lutea were also counted. Any rabbit containing abnormal fetus and/or resorption sites was thoroughly examined for signs of natural disease. Viable young were weighed, sexed and examined internally and
	subsequent clearing, staining and skeletal examination. Resorption sites were classified as early or late. Abnormalities were classified as major or variant.
GLP: Test substance:	Yes [] No [X] ? [] LAS (Na salt), as a slurry containing 64% active ingredient (Lion Oil and Fat Co., Ltd.); average alkyl chain length (based on LAS SIDS Consortium Survey 2002) = C_{112}
Remarks:	The maternal NOAEL of 2 mg/kg bw d is considered very conservative because the range (2-300 mg/kg bw d) was too wide.
Reference:	Palmer, A.K. and Neuff, A.M. 1971. Effect of LAS detergent on pregnancy of the New Zealand white rabbit. Report No. 4387/71/543.
Reliability:	2 Valid with restrictions
(h)	
Species/strain:	Mouse/ICR
Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	gavage
Duration of the test:	See method.
Exposure period:	See method.
Frequency of treatment	:daily
Doses:	0.4, 4.0% (40, 400 mg/kg bw d)
Control group:	Yes [X] ; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal	
Toxicity:	40 mg/kg bw d
NOAEL teratogenicity	400 mg/kg bw d
Results:	In mice given 400 mg/kg from day 0 to 6, the pregnancy rate was 46.2%
	compared to 92.9% in the controls. There was no increase in
	it appears likely that maternal toxicity use present at the high does group
Method:	LAS was administered from day 0 to day 6 of pregnancy or from day 7 to
wicthou.	13 of pregnancy. Thirteen to fourteen mice were used in each dose group
CI D.	V_{es} [1 No [X] 2 [1]
Test substance:	Ianan I AS: average alkyl chain length (based on I AS SIDS Consortium)
rest substance.	Survey $2002 = C_{11,7,125}$ activity 99 5%
Remarks [.]	Information as cited in the IUCLID Data Sheet and the IPCS document
Reference:	1) European Commission. 2000a. Benzenesulfonic acid. $C_{10,12}$ -alkyl
	derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Takahashi, M., Sato, K., Ando, H., Kubo, Y. and Hiraga, K. 1975.
	Teratogenicity of some synthetic detergents and linear alkylbenzene

Reliability:	 sulfonate (LAS). Ann. Rep. Tokyo Metrop. Res. Lab. Public Health 26: 67-78 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland. 4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document. 	
(i)		
Species/strain:	Mouse/ICR.	
Sex:	Female [X]; Male []; Male/Female []; No data []	
Administration:	gavage	
Duration of the test:	see text.	
Exposure period:	day 6 through day 15 of pregnancy.	
Frequency of treatment	zdaily.	
Doses:	10, 100, 300 mg/kg bw d	
Control group:	Yes [X]; No []; No data [];	
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []	
LOAEL Maternal		
Toxicity:	10 mg/kg bw d	
NOAEL teratogenicity: 300 mg/kg bw d		
Results:	The dams showed inhibition of body weight gains in all groups, especially	
	in the high dose group. In this group, two dams died, and there was one	
	case of premature delivery and death of all fetuses. There were findings	
	such as decreased body weight and delayed ossification among the living	
	fetuses, but there was no increase in malformations.	
Method:	LAS was administered by gavage to 25 to 33 mice per dose on days 6	
	through 15 of gestation.	
GLP:	Yes [] No [X] ? []	

- GLP:Yes [] No [X] ? []Test substance:Japan LAS; average alkyl chain length (based on LAS SIDS Consortium
Survey, 2002) = $C_{11.7-12.3}$; activity: 48.6%
- Remarks: Information as cited in the IUCLID Data Sheet and the IPCS document.
- Reference:1) European Commission.2000a.Benzenesulfonic acid, C10-13-alkyl
derivs., sodium salts.Year 2000 CD-ROM edition.
 - 2) Shiobara, S. and Imahori, A. 1976. Effects of linear alkylbenzene sulfonate orally administered to pregnant mice and their fetuses. J. Food Hyg. Soc. Jpn. 17:295-301 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
 heitity: A. This study is assigned a reliability score of 4 because the original
- Reliability: 4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.

(j)	
Species/strain:	Rat: SD-JCL
Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	oral feed
Exposure period:	from day 0 to 20 of gestation
Frequency of treatment:	Daily
Doses:	0.1%, 1.0% (80, 780 mg/kg bw d)
Control group:	Yes [X] ; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []

NOAEL Maternal:	780 mg/kg bw d
NOAFL teratogenicity:	780 mg/kg bw d

NOAEL lefatogementy.	/80 mg/kg bw d
Results:	The LAS intake was about 780 mg/kg with the 1% diet, but there were no abnormalities in the body weight gains of the dams, or in the occurrence
	and maintenance of pregnancy. The values of the litter parameters did not
	differ from those of the controls and there was no evidence of
	teratogenicity. The numbers of offspring were rather low in the 1% group,
	and the wearing rate of 78.3% was lower than the 100% rate observed in
	the controls. However, there were no abnormalities in body weight gain,
Matha di	organ weights or functions in the offspring.
Method:	LAS was fed in the diet to 16 pregnant female rats/dose from day 0 to 20 of gestation.
GLP:	Yes [] No [X] ? []
Test substance:	Japan LAS; average alkyl chain length (based on LAS SIDS Consortium Survey, 2002) = C _{11.7-12.3} .
Remarks:	Information as cited in IUCLID Data Sheet and IPCS document.
Reference:	1) European Commission. 2000a. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Tiba, S., Shiobara, S., Imahori, A. and Kitagawa, T. 1976. Effects of
	linear alkylbenzene sulfonate on dam, fetus and newborn rat. J. Food
	Hyg. Soc. Jpn. 17:66-71. (In Japanese); cited in IPCS. 1996.
	Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates
	and Related Compounds. World Health Organization, Geneva,
	Switzerland. Original article in Japanese.
Reliability:	4 This study is assigned a reliability score of 4 because the original
	report was not available for review. However, the study was evaluated
	by IPCS prior to inclusion in their criteria document.
(k)	
Species/strain:	Weanling Charles River CD Sprague-Dawley albino rats and New Zealand rabbits
Sex:	Female []; Male []; Male/Female [X]; No data []
Administration:	oral in feed
Duration of the test:	two generation (rats); one generation (rabbits)
Exposure period:	Rat: continuously or during organogenesis period of six pregnancies Rabbit: day 2-16 of gestation during a single pregnancy
Frequency of treatment:	continuous
Doses:	Rat: 0.1, 0.5 or 1.0% TAE ₃ S/LAS (equivalent to 50, 250 or 500
	mg/kg/day in female rats corresponding to LAS doses of 22.5, 112.5 and
	225 mg/kg bw d.)
	Rabbit: 50, 100, or 300 mg/kg TAE ₃ S/LAS, corresponding to LAS doses
	of 22.5, 45, and 135 mg/kg bw d
Control group:	Yes [X]; No []; No data [];
	Concurrent no treatment [X] ; Concurrent vehicle []; Historical []
NOAEL Maternal:	225 mg/kg bw d LAS (rat)
NOAFI teratogenicity:	225 mg/kg bw d LAS (rat)
THE Managementy.	135 mg/kg bw d LAS (rabbit)
Results [.]	Maternal toxicity: No treatment related adverse effects were observed in
1.05010.	the maternal generation of either rats or rabbits. Fetal toxicity: No
	treatment-related adverse effects were observed on concention fetal
	viability or post-natal survival in either generation of rats Some

statistically significant differences were observed in live-born and surviving pup numbers, but there were no consistent trend or patterns. Combined with the high lactation index in all groups, indicating a very low mortality among the suckling rats, these differences were considered due to causes not related to treatment with the test material. There were no statistical differences among the groups of rat fetuses taken by Caesarian section and examined for birth defects. Some minor soft-tissue and skeletal anomalies were observed in rat fetuses from both generations. Of the 1210 rat fetuses, the overall incidence of abnormal young was 9.0% and did not vary significantly between treatment groups or the controls. Similarly, no treatment-related adverse effects were seen in rabbits treated with the surfactant mixture. Of the 855 rabbit fetuses, 5.7% were abnormal, but the incidence of defective fetuses in the test groups were not significantly different from those in controls. Therefore, no test related effects were seen on reproduction or embryonic development in either animal species.

Method:

(A) Rat studies

The rats were divided into seven groups consisting of 25 males and 25 females after a five day acclimation period in the laboratory. The tallow alkyl ethoxy sulfate (55%)-LAS(45%) mixture (TAE₃S/LAS) was mixed into the ground commercial feed at levels of 0.1, 0.5 or 1.0% and fed to two generations of male and female rats continuously or only to females during each period of organogenesis (days 6-15) of pregnancy. A control group was fed the commercial feed with no additive. The parent animals body weights were recorded weekly for the first eight weeks in each generation and afterwards recorded only at each mating phase.

Once sexually mature, five rats of each sex per group were sacrificed for histology during each generation. The remaining rats were mated on a one-to-one basis three successive times during each generation. The first two pregnancies ($F_{1a, 1b, 2a}$ and $_{2b}$) in each generation were allowed to proceed to natural births. These pups were counted and inspected for abnormalities at birth. The third pregnancies in each generation (F_{1c} and F_{2c}) were used for teratology purposes. At weaning all pups except the F_{1b} litters, which became the second generation parents, were discarded. Animals for the second generation. During the third pregnancies of both generations (F_{1c} and F_{2c}), one-half of each group of females was sacrificed on day 13 of gestation. A laparotomy was performed and the number of corpora lutea of pregnancy and the number of implantation and resorption sites were observed and recorded. On day 21 of gestation, the remaining dams were examined in a similar manner.

One-third of the fetuses in each of the third litters were examined for skeletal development and defects. The others were examined for soft tissue defects. During the teratology period, tissues were collected from five parent females of each group and from five parent males of the control and continuously treated groups. The heart, liver, kidneys and gonads were weighed, blood was taken for routine hemograms, and tissues were set in 10% formalin, paraffin-sectioned and stained with haemotoxylin-eosin for histopathy.

(B) Rabbit study

Five groups of 25 sexually mature does were distributed on the based on body weights and litter mates. The does were artificially inseminated with

GLP:	0.25 mL of undiluted semen, collected from sperm-tested untreated males. Ovulation was induced by a 1 mg/kg injection of PLH immediately prior to insemination. The day of insemination was considered day 0 of gestation. The TAE ₃ S/LAS mixture was administered by gavage from day 2 through day 16 of gestation at daily doses of 50, 100, or 300 mg/kg of body weight. Distilled water was the vehicle and each doe received 2 mL of solution per kg of bodyweight. For the control groups, one received no treatment and the other received a treatment with water. In order to monitor the dose level, the females were weighed every three days. The dams were sacrificed on day 28 of gestation and the number of corpora lutea, resorptions and live or dead fetuses were observed and recorded. The fetuses were removed and treated and examined for abnormalities. Yes [] No [] ? [X]
Test substance:	A mixture of 55% tallow alkyl ethoxylate sulfate (TAE ₃ S) and 45% LAS (assumed Procter and Gamble products)
Remarks:	The authors indicate that rats received up to 6000 times the estimated "worst-case" human exposure without causing any deleterious effects on the development or variability of the embryo or fetus. Rabbits also received doses many times the "worst-case" human dose without causing significant effects.
Reference:	Nolen, G.A., Klusman, L.W., Patrick, L.F. and Geil, R.G. 1975. Teratology studies of a mixture of tallow alkyl ethoxylate and linear alkylbenzene sulfonate in rats and rabbits. Toxicology. 4:231-243.
Reliability:	2 Valid with restrictions
(1)	
Species/strain:	Rat: CD
Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	Dermal
Exposure period:	days 2 through 15 of gestation
Frequency of treatment	$\begin{array}{c} \text{(ally} \\ 0.02 0.2 \text{ar 20/ an the should skin as 0.5 ml actuation} \end{array}$
Doses:	Vos 1V 1: No 1 1: No data 1 1:
Control group.	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal:	0.3% (6 mg/kg bw d)
NOAEL teratogenicity:	3% (60 mg/kg bw d)
Results:	Maternal toxicity:
	At the high dose, local irritation was observed resulting in a slightly lower body weight gain and hypersensitivity (i.e., animals were increasingly irritable). Teratogenicity:
	No differences were observed among the dose groups and the control group with respect to number of litters, viable young, litter weight, foetal weight, embryonic deaths, implantations, corpora lutea, or pre- and post implantation embryonic loss. The incidences of major malformations, minor visceral or skeletal anomalies, and skeletal variants were not different between controls and dose groups even at maternal by toxic doses.
Method:	The dosage volume was 0.5 mL which was applied to an area of skin (4x4 cm) from which the fur was removed. The nominal doses were 0.6, 6.0, and 60 mg/kg bw d.
GLP:	Yes [] No [X] ? []
11 2005	208

Test substance:	Japan LAS; average alkyl chain length (based on LAS SIDS Consortium Survey, $2002 = C_{117}$.
Reference:	Palmer, A.K., Readshaw, M.A. and Neuff, A.M. 1975b. Assessment of the teratogenic potential of surfactants (Part III) – Dermal application of LAS and soan. Toxicology 4:171-181
Reliability:	2 Valid with restrictions
(m)	
Species/strain:	Rat/Wistar
Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	Dermal
Duration of the test:	sacrifice at day 21 of gestation
Exposure period:	21 days (days 0 through 21 of gestation)
Frequency of treatment	t:Daily
Doses:	0.05, 0.1, and 0.5% (0.1, 2 and 10 mg/kg bw d) or 1.0, 5.0, and 20% (20,
	100, and 400 mg/kg bw d)
Control group:	Yes [X] ; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal:	1% (20 mg/kg bw d)
NOAEL teratogenicity	: 20% (400 mg/kg bw d)
Results:	Maternal toxicity:
	The dams treated with 20% and 5% showed inhibition of body weight
	gain and local skin effects.
	Teratogenicity:
	There were no indications of teratogenic or embryotoxic effects at any
	level in either group tested.
Method:	LAS was applied to depilated areas on the chests and backs of female rats
	12-18 weeks of age. Five to six hours prior to treatment an exposure site
	(roughly 24 cm ²) in the dorsothoracic region of each animal from group II
	through IX was clipped to a length of 1 mm. The animals were reclipped
	every 48 hr throughout the study. Group I animals were unclipped, group
	If animals were clipped but not treated and group III animals were clipped
	and treated with tap water. The mated female rats were treated daily from
	day 0 through day 20 of gestation. A 0.5-ml sample of the appropriate
	concentration of LAS and/or tap water was applied once daily to the
	clipped area and spread with a gloved finger over as much of the exposure
	site as possible. Each application was carried out slowly over a 3-min
	period. In the 1, 5 and 20% LAS groups (groups VII, VIII and IX,
	respectively corresponding to 20, 100 and 400 mg/kg/day) the test
	material was allowed to remain on the backs of the animals for 30 min.
	after which it was removed with warm tap water. The test material was
	not removed from the backs of the animals in the 0.05, 0.1 and 0.5% LAS
	groups (groups 1V, V and VI corresponding to 1, 2 and 10 mg/kg/day).
	Animal body weight and food consumption were determined during the
	treatment period. Daily observations were also made for toxicological
CID	
GLP.	ICS [] NO [A] ? [] LAS: mean sheir length: 11.7; mean meleouler unight: 244 estivity, 20.50/
Test substance.	LAS, mean chain length. 11.7, mean molecular weight. 544, activity. 20.5%
Reference.	bally, I.W., Schloedel, K.E. and Kineen, J.C. 1980. A telatology study of
	Toyical 18:55 58
Daliability	2 Valid with restrictions
Kellauliity.	
1, 2005	209

(n)	
Species/strain:	Mouse/CD-1
Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	Dermal
Exposure period:	days 2 through 13 of gestation
Frequency of treatment	:daily
Doses:	0.03, 0.3, or 3% LAS in aqueous solution onto the shaved skin (5, 50 and 500 mg/kg bw d)
Control group:	Yes [X]; No []; No data [];
6 1	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal:	0.03% (5 mg/kg bw d)
NOAEL teratogenicity:	0.3% (50 mg/kg bw d)
Results:	Maternal toxicity:
	At the high dose, severe local irritation was observed resulting in body weight loss and hypersensitivity (i.e., animals were increasingly irritable), which was also observed at the medium dose. The conclusion of the authors was that LAS caused marked toxicity at the high dose and moderate or mild toxicity at the medium dose. Teratogenicity:
	At the lowest dose, the dose with no maternal toxicity, no differences were observed among the LAS group and the control group with respect to number of litters, viable young, litter weight, foetal weight, embryonic deaths, implantations, corpora lutea, pre- and post implantation embryonic loss. The incidences of major malformations, minor visceral or skeletal anomalies, and skeletal variants were not different between controls and the LAS group.
Method:	Maternally toxic dosages were associated with a significantly increased foetal loss and consequent reduction of litter size. This was due almost entirely to total litter losses as values, for the one surviving litter at 3% was similar to the control litters. At the medium dose, the moderate degree of maternal toxicity correlated with a moderate effect on litter values in that, whilst the higher incidence of embryonic deaths differed significantly from control values, the consequent reduction in litter size was not statistically significant. With regard to major malformations and minor skeletal or visceral anomalies, the assessment of litters was not possible in the highest dose group due to the low survival. At the low doses, no treatment related increase of the incidences of major malformations and minor skeletal and visceral anomalies were observed. The dosage volume was 0.5 mL which was applied to an area of skin (2 x 3 cm) from which the fur was removed. The nominal doses were 5, 50, and 500 mg/kg bw/day.
GLP:	Yes [] No [X] ? []
Test substance:	Japan LAS; average alkyl chain length (based on LAS SIDS Consortium
Reference:	Survey, 2002) = C _{11.7-12.3} . Palmer, A.K., Readshaw, M.A. and Neuff, A.M. 1975b. Assessment of the teratogenic potential of surfactants (Part III) Dermal application of
Reliability:	2 Valid with restrictions
(0)	
Species/strain:	mouse: ddy.

Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	Dermal
Exposure period:	day 0 through day 13 of pregnancy
Frequency of treatment:	Daily
Doses:	2.2% (110 mg/kg bw d)
Control group:	Yes []; No []; No data [X];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal:	2.2% (110 mg/kg bw d)
NOAEL teratogenicity:	2.2% (110 mg/kg bw d)
Results:	No abnormalities were seen in the dam or fetuses.
Method:	An area of 4 x 4 cm on the backs of mice was depilated and LAS was
	applied at a dose of 0.5 ml/mouse/day. Sixteen animals were used per
CL D	group.
GLP:	Yes [] No [X] ? []
Test substance:	LAS; molecular wt = 346 ; average alkyl chain length = 11.8 ; activity: 99.5%
Remarks:	Information as cited in the IUCLID Data Sheet and the IPCS document.
Reference:	1) European Commission. 2000a. Benzenesulfonic acid, C_{10-13} -alkyl derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Sato, K., Ando, H., Yuzawa, K. and Hiraga, K. 1972. Studies on
	toxicity of synthetic detergents (III) Examination of teratogenic effects of
	alkyl benzene sulfonates spread on the skin of mice. Ann. Rep. Tokyo
	Metrop. Res. Lab. Public Health. Environmental Health Criteria 169:
	Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO,
	Geneva, Switzerland.
Reliability:	4 This study is assigned a reliability score of 4 because the original
	report was not available for review. However, the study was evaluated
	by IPCS prior to inclusion in their criteria document.
(p)	
Species/strain:	mouse/ICR
Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	dermal
Exposure period:	from day 6 through day 15 of pregnancy
Frequency of treatment:	daily
Doses:	0.03, 0.3, 3% (15, 150, and 1500 mg/kg bw d)
Control group:	Yes [X] ; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal:	0.3% (150 mg/kg bw d)
NOAEL teratogenicity:	3% (1500 mg/kg bw d)
Results:	The 3% group showed a clear decrease in the pregnancy rate (67.9%)
	when compared with a rate of 96.3% in the controls. However, there were
	no decreases in the litter size, and no changes in the litter parameters with
	the exception of a slight decrease in fetal body weight. There were no
	significant increases in the incidence of malformations in the fetuses.
Method:	Areas of 4 x 4 cm on the backs of the mice were depilated and aqueous
	solutions of LAS were applied.
GLP:	Yes [] No [X] ? []
Test substance:	C ₁₀₋₁₄ LAS (CAS #69669-44-9); average alkyl chain length (based on LAS
	SIDS Consortium Survey, 2002) = C _{11.7} ; activity: 46.6%
Remarks:	Information as cited in the IUCLID Data Sheet and the IPCS document.

1) European Commission. 2000a. Benzenesulfonic acid, C_{10-13} -alkyl
derivs., sodium salts. Year 2000 CD-ROM edition.
2) Imahori, A., Kinagawa, T. and Shiobara, S. 1976. Effects of linear
alkyl benzene sulfonate (LAS) applied dermally to pregnant mice and
their fetuses. Jpn. J. Public Health. 23:68-72 (in Japanese); cited in IPCS
(1996); Environmental Health Criteria 169: Linear Alkylbenzene
Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
4 This study is assigned a reliability score of 4 because the original
report was not available for review. However, the study was evaluated
by IPCS prior to inclusion in their criteria document.

(q)	
Species/strain:	mouse/ICR
Sex:	Female [X]; Male []; Male/Female []; No data []
Administration:	Subcutaneous injection
Exposure period:	Day 0 to 3 or day 8 to 11 of pregnancy
Frequency of treatment	: daily
Doses:	0.35, 1% in water (20, 200 mg/kg bw d)
Control group:	Yes [X] ; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal:	0.35% (20 mg/kg bw d)
NOAEL teratogenicity	: 1% (200 mg/kg bw d)
Results:	When dams were administered the 1% solution from day 0 to 3 of pregnancy, there was an initial decrease in body weight and necrosis at the
	injection sites. The number of pregnancies decreased in the mice given the 1% solution compared to the controls (61.5% vs. 93.3%) There were
	no significant changes with respect to inter parameters, major
Mathad	mailormations of minor abnormatities.
Method:	LAS was injected at doses of 20 mL/kg/day from day 0 to 3 of day 8 to 11
CI D.	of pregnancy. There were 12 - 19 mice in each treatment group.
GLP:	$Y \in S[1] NO[\mathbf{A}] ?[1]$
Test substance:	LAS, activity: 99.5%
Reference:	1) European Commission. 2000a. Benzenesulfonic acid, C_{10-13} -alkyl
	derivs., sodium salts. Year 2000 CD-ROM edition.
	2) Takahashi, M., Sato, K., Ando, H., Kubo, Y. and Hiraga, K. 1975. Teratogenicity of some synthetic detergents and linear alkylbenzene sulfonate (LAS) Ann. Rep. Tokyo Metrop. Res. Lab. Public Health 26:67- 78 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO Geneva Switzerland
Reliability.	4 This study is assigned a reliability score of 4 because the original
Rendomity.	report was not available for review However the study was evaluated
	by IPCS prior to inclusion in their criteria document
(r)	
Species/strain.	rabbit/New Zealand white

(-)	
Species/strain:	rabbit/New Zealand white
Sex:	Female [X] ; Male []; Male/Female []; No data []
Administration:	Dermal
Exposure period:	17 days (days 1 through 16 of gestation)
Frequency of treatment	: Daily
Doses:	0.03, 0.3, or 3% (0.9, 9, or 90 mg/kg bw d)

Control group:	Yes [X] ; No []; No data [];
	Concurrent no treatment [X]; Concurrent vehicle []; Historical []
NOAEL Maternal:	0.03% (0.9 mg/kg bw d)
NOAEL teratogenicity:	3% (90 mg/kg bw d)
Results:	Maternal toxicity:
	At the high dose, local irritation was observed resulting in body weight
	loss and hypersensitivity (i.e., animals were increasingly irritable). The medium dose caused retarded body weight gain and hypersensitivity.
	At the westing and have does not difference and the second descent the
	At the medium and low dose, no differences were observed among the
	voung, litter weight, foetal weight, embryonic deaths, implantations,
	corpora lutea, pre and post implantation embryonic loss. The high dose
	was associated with slightly, but not significantly, higher foetal loss and
	lower litter size. The incidences of major malformations, minor visceral
	or skeletal anomalies, and skeletal variants were not different between
	controls and dose groups even at maternal toxic doses.
Method:	The dosage volume was 10 mL which was applied to an area of skin (12 x
	20 cm) from which the fur was removed. The nominal doses were 0.9,
21 D	9.0, and 90 mg/kg bw/day. Thirteen rabbits per dose were used.
GLP:	Yes [] No [X] ? []
Test substance:	LAS
Reference:	Palmer, A.K., Readshaw, M.A. and Neuff, A.M. 1975b. Assessment of the teratogenic potential of surfactants (Part III) – Dermal application of
	LAS and soap. Toxicology 4:171-181.
Reliability:	2 Valid with restrictions

5.10 OTHER RELEVANT INFORMATION

(a)	
Type:	Toxicokinetics
Results:	35 S-LAS (15 x 10 ⁸ cpm) was administered topically, once, onto the back
	skin of rats and guinea pigs. Absorption and distribution in major organs and blood were studied. Urine was collected 24 hours after topical application of the test substance. In the guinea pig, the amount of ³⁵ S excreted in the urine was about 0.1% of the total administered dose. Organ distribution in the rat was about 5 times greater than in the guinea pig, and "relatively large amounts" of ³⁵ S were noted in the liver and kidneys. Conclusion states that: "when 0.2 to 0.5% LAS was topically applied once, approximately 0.1 to 0.6% was absorbed"; there was no accumulation in specific organs; the "test chemical was quickly excreted in the urine after being metabolized".
Reference:	Debane, C. 1978. National Hygiene Laboratory; in: "Report on Studies on Synthetic Detergents", October 1978, Japan's Science and Technology Agency [in Japanese]
Reliability:	4 Not assignable
(b)	
Туре:	Toxicokinetics
1 0005	01.2
Method:	The absorption, distribution, metabolism and elimination of LAS (radioactively labelled with ³⁵ S) were studied in male Charles River rats. LAS was administered as an aqueous solution
-----------------	--
Results:	The compound was readily absorbed from the gastrointestinal tract (80- 90% of the dose). Most of the absorbed ³⁵ S was eliminated within 72 hours and 60-65% of the absorbed dose was eliminated in the urine, with sulfophenyl butanoic and sulfophenyl pentatonic acid as metabolites. These metabolites were not reabsorbed from the kidney tubules. 35% of the absorbed ³⁵ S was excreted in the bile and were reabsorbed completely from the gastrointestinal tract. Although the metabolites in the bile were not identified, it was shown that no unchanged LAS was eliminated via this pathway
Test substance:	C_{10-13} , LAS (CAS #68411-30-3); alkyl chain length predominately C_{11} , C_{12} and C_{13} .
Remarks:	The authors suggested that metabolism proceeded via omega oxidation with subsequent beta-oxidation. Retention of radioactivity was not observed in any organ
Reference:	Michael, W.R. 1968. Metabolism of linear alkylate sulfonate and alkyl benzene sulfonate in albino rats. Toxicol. Appl. Pharmacol. 12:473-485.
Reliability:	2 Valid with restrictions
(c)	
Type:	Toxicokinetics
Results:	LAS is well absorbed by via the gastrointestinal tract of pigs treated with 3.3 mmol/animal 35S-Na-dodecylbenzene sulfonate. At 200 hours after oral administration, the radioactivity was relatively high in bristles and bones, while low in liver, kidney and spleen. After 10 weeks only traces of radioactivity were still in the body. 40 hours after the administration, 40% of the dose was excreted into the urine and 60% of the dose via the faeces.
Remarks:	Information as cited in the IUCLID Data Sheet and the IPCS document.
Reference:	 European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition. Havermann, H. and Menke, K.H. 1959. Biological study of the watersoluble surface-active substances. Fette. Seifen. Anstrichmittel 61:429-434. (in German); cited in IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland. Original article in Japanese.
Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(d)	
Type:	Toxicokinetics
Results:	Four (2 male, 2 female; 5 kg average body weight) adult rhesus monkeys (<i>Macaca mulatta</i>) were given single or repeated oral (30, 150 or 300 mg/kg) or subcutaneous (0.1, 0.5 or 1 mg/kg) doses of ¹⁴ C-LAS. After single 30 mg/kg oral doses the radioactivity was rapidly excreted, mostly during the first 24 hours. Means of 71.2% and 23.1% of the dose were excreted in the urine and feces, respectively, during 5 days. Similarly, after single 1 mg/kg subcutaneous doses, means of 64.1% and 10.9% were excreted in urine and feces, respectively, during 5 days, mostly during the

	first 24 hours. After single oral doses of 30, 150 and 300 mg/kg, peak plasma concentrations (at 4 hours in all cases) were very similar, with levels of 34, 41 and 36 μ g/mL, respectively. Concentrations declined during the period of 6-24 hours, with a biological half life of about 6.5 hours. After single subcutaneous doses of 0.1, 0.5 and 1 mg/kg, peak plasma concentrations increased almost proportionately, with levels of 0.16, 0.72 and 1.13 μ g/mL, respectively. During the 120 hours after single oral (30 mg/kg) or subcutaneous doses (1 mg/kg) the average rate of excretion was between 63 and 74% in the urine and between 9 and 26% in the feces
	During seven consecutive daily oral (30 mg/kg/day) or subcutaneous (1 mg/kg/day) doses, there was no accumulation of radioactivity in plasma. Mean peak concentrations and biological half-lives were similar after the first and seventh doses. Two hours after the last dose, the highest radioactivity was observed in the stomach. Radioactivity was also observed in the intestinal tract, kidneys, liver, lung, pancreas, adrenals and pituitary. At 24 hours, concentrations were highest in the intestinal tract, probably indicating biliary excretion. Since the concentrations in the tissues in general were lower than in plasma, no specific accumulation of LAS occurred. When ¹⁴ C-LAS was injected into the skin, most of the radioactivity.
	radioactivity remained at the site of injection. No localization of radioactivity in any tissue occurred. No unchanged LAS was detected in urine samples after oral or subcutaneous doses (either single or repeated). Five metabolites were excreted but they were not identified. Incubations with beta-glucuronidase/sulfatase did not affect the metabolites, indicating that the metabolites were probably not present as the corresponding conjugates.
Test substance:	Alkyl benzene sulfonate, sodium salt; mean molecular weight 349 (supplied by the Japan Soap and Detergent Association)
Reference:	Cresswell, D.G., Baldock, G.A., Chasseaud, L.F. and Hawkins, D.R. 1978. Toxicological studies of linear alkylbenzene sulfonate (LAS) in rhesus monkeys: (II) the disposition of [¹⁴ C] LAS after oral or subcutaneous administration. Toxicology 11:5-17.
Reliability:	2 Valid with restrictions
(e) Type:	Toxicokinetics
Results:	Rats were dosed orally with ¹⁴ C-Na-LAS and radioactivity was detected 0.25 hr after administration, reaching a maximum at 2 hrs. The biologically half lives were calculated to be 10.9 hrs. The distribution was high in the digestive tract and in the bladder at 4 hours after administration. Concentrations were also high in the liver, kidney, testis,

spleen and lung. 168 hours after the administration, the rates of excreted

1) European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl

distribution, metabolism, and excretion of linear alkylbenzene sulfonate in rats. J. Jpn. Oil Chem. Soc. 39:59-68 (in Japanese); cited in: IPCS

Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.

1979.

Absorption,

Linear Alkylbenzene

Information as cited in the IUCLID Data Sheet and the IPCS document.

radioactivity were 47% in the urine and 50% in the faeces

derivs., sodium salts. Year 2000 CD-ROM edition. 2) Sunakawa, T., Ikida, Y. and Okamoto, K.

(1996); Environmental Health Criteria 169:

Remarks:

Reference:

Reliability:	4 This study is assigned a reliability score of 4 because the original report was not available for review. However, the study was evaluated by IPCS prior to inclusion in their criteria document.
(f)	
Type:	Toxicokinetics
Method:	Studies were conducted with isolated human skin preparations as well as <i>in vivo</i> investigations of percutaneous administration of LAS to rats. Two C_{12} LAS solutions were tested: a 3 mM solution in 25% v/v polyethylene glycol 400 in water, and a 3 mM suspension in water prepared by homogenizing and equilibration in an all-glass homogenizer.
Results:	No radioactivity was detected in urine or faeces.
Test substance:	LAS (CAS #25155-30-0); activity: >99%
Remarks:	These studies demonstrated that penetration through skin and subsequent systemic absorption of this surfactant does not occur to any significant extent at 24 to 48 hrs.
Reference:	Howes, D. 1975. The percutaneous absorption of some anionic surfactants. J. Soc. Cosmet. Chem. 26:47-63.
Reliability:	2 Valid with restrictions
(g)	
Туре:	in vitro studies with fertilised eggs
Method:	Eggs from B6 x $C3F_1$ female mice, which were fertilised <i>in vitro</i> with sperm from C3 x $101F_1$ male mice, were treated with LAS for 1 hour at the pronucleus stage and then cultivated for 5 days.
Results:	Eggs treated with LAS at concentrations of less than 0.025% developed to the blastocyst stage as well as the untreated ones. At higher concentrations no egg developed beyond the 1-cell stage. The group that was treated with natural soap had no effect up to a concentration of 0.05%.
Test substance:	Commercial LAS detergent (Japan)
Remarks:	The authors suggest that LAS interrupts mouse pregnancy by killing fertilized eggs, however, the relevance of the results obtained in this assay for the <i>in vivo</i> situation has not been proven.
Reference:	Ishii, Y., Samejima, Y., Saji, F. and Nomura, T. 1990. Effect of alcohol sulfate, linear alkylbenzene sulfonate, and natural soap on the development of fertilized eggs of the mouse <i>in vitro</i> . Mutat. Res. 242:151-155.
Reliability:	2 Valid with restrictions

5.11 EXPERIENCE WITH HUMAN EXPOSURE

(a)	
Type:	Human Repeat Insult Patch Test
Number of Subjects:	95 (at completion)
Methods:	LAS was applied at 0.10% (w/v) on the upper arms of volunteers, under occlusive patch conditions. Test material was applied for 24 hours, 3 times a week, for 3 weeks during the induction period. After a 14-17-day rest, a 24-hour challenge patch was applied on the original and alternate arm sites.
Results:	There was no evidence of skin sensitization on the 95 subjects who completed the test.

Test Material: Reference:	LAS; activity: 30.0% The Procter & Gamble Company, unpublished data, Report No. ISC-124- 0470.
Reliability:	4 Not assignable
(b) Type: Number of subjects: Results: Reference: Reliability:	 Human Repeat Insult Patch Tests. 2,294 (exposed to LAS as a raw material) 17,887 (exposed to LAS in formulations) No evidence of skin sensitization. Nusair, T.L., Danneman, P.J., Stotte, J., and Bay, P.H.S. 1988. Consumer products: Risk assessment process for contact sensitization. Toxicologist 8:258. (abstract). 4 Not assignable
(c) Type: Results: Remarks: Reference:	Occlusive epicutaneous LAS was applied at 1% once to middle Europeans for 24 hours. Test duration was 6 days. The authors concluded that LAS was sufficiently compatible to the skin. Information as cited in the IUCLID Data Sheet. 1) European Commission. 2000a. Benzenesulfonic acid, C ₁₀₋₁₃ -alkyl derivs., sodium salts. Year 2000 CD-ROM edition. 2) Matthies, W., Henkel KgaA, unpublished data, Report No. 890356 (1989).
Reliability:	4 Not assignable
(d) Type: Methods:	Comparison of human experience to eye exposure to surfactants with animal eye irritation studies Summaries of human manufacturing accident and consumer accident eye irritation incidents over several years were collected for laundry, household and personal cleaning products. These summaries included the date the incident occurred, the exact product or formulation involved, the estimated time for the eyes to return to normal, and a brief description of the eye response. A total of 231 manufacturing employee incidents and 284 consumer incidents were usable, covering 24 and 23 different products, respectively. The results of these human contact incidents were compared to the results of studies conducted using two rabbit eye irritation procedures commonly used to assess eye irritation. These two methods are briefly summarized below:
	 The FHSA (modified Draize) test utilized albino rabbits, which were dosed into the conjunctival sac with 0.1 mL of liquid product or the weight of the solid product equivalent to 0.1 cc. The eyelids were held shut for one second after instillation. The animals were observed at 1, 2, 3, 4, 7, 14 and 21 days or longer. The Griffith low-volume eye irritation test utilized albino rabbits, with the test substances dosed directly on the cornea with 0.01 mL of liquid product or the weight of solids equivalent to 0.01 cc. The eyelid was released immediately after dosing without forced closing. The animals were observed for the same time periods as above.

Results: Remarks:	Median days-to-clear for human accident eye exposure are minimal. Only one product was as high as 7 days and the rest were 2 days or less. A total of 88.1% of the eyes cleared in 4 days or less. There was no reported permanent eye damage. Both of the animal methods produced more severe eye responses than were reported from human eye accidents with the same consumer products (Freeberg et al. 1984). Animal studies consistently overestimated the human response to
	accidental exposure. Of the two animal methods, the low-volume rabbit test gave a closer correlation, while the FHSA test gave the least correlation. A follow-up study published in 1986 confirmed this conclusion. Finally, an additional paper published in 1995 compared consumer eye irritation comments from 1985 to 1992 with the results of low volume eye tests (LVET). The clinical data and consumer experience consistently showed less eye irritation in humans from exposure to products than was observed in animal studies. Recovery in humans was
Reference:	similar to that reported previously, supporting milder irritation response and faster healing in humans than in rabbits. Freeberg, F.E., Griffith, J.F., Bruce, R.D., and Bay, P.H.S. 1984. Correlation of animal test methods with human experience for household products. J. Toxicol Cut. & Ocular Toxicol. 1:53-64. Freeberg, F.E., Hooker, D.T., and Griffith, J.F. 1986. Correlation of animal eye test data with human experience for household products: an update. J. Toxicol Cut. & Ocular Toxicol. 5:115-123. Cormier, E.M., Hunter, J. E., Billhimer, W., May, J., and Farage, M.A. 1995. Use of clinical and consumer eye irritation data to evaluate the low- volume eye test J. Toxicol - Cut & Ocular Toxicol. 14:197-205.
Reliability:	2 Valid with restrictions
(e)	
Type: Methods:	Characterization of aerosols generated from a consumer spray product The study was designed to evaluate size distribution of aerosols suspended in air after normal use of consumer spray products. Size distribution of aerosols generated from six different consumer trigger spray product nozzles was measured using a laser diffraction particle sizer (Mastersizer Model X, Malvern Instruments Ltd). A 300 mm receiving lens was used, which covers a particle size range of 1.2-600 microns. The exit of the trigger sprayer was positioned at 20 mm from the lens to the center of the device to avoid vignetting, and 120 mm from the laser beam axis to the tip of the trigger sprayer to avoid its interference with the laser beam. Measurements were repeated 5 times for each sprayer.
Results:	The overall mean (n=30) particle size is 0.11% particles under 10 microns, with a standard deviation of 0.21. The very highest observation was 0.80%. Under normal use conditions, the peak breathing zone concentration under 10 microns ranged from 0.13 to 0.72 mg/m ³ .
Remarks:	This testing only captured the spray particles that are under 600 microns, so the actual percentage of total volume sprayed is less than 0.1%
Reference:	Battelle. 1999. Measurement and Characterization of Aerosols Generated from a Consumer Spray Product – Pilot Study. Prepared for The Soap and Detergent Association. Battelle Study No. N003043A, January 18, 1999
Reliability:	1 Valid without restriction

(f) Type: Methods:	Modeling of dose observed from inhalation of aerosols The worst case air concentration of LAS resulting from use in surface cleaning spray products was modeled using methods recommended by the HERA Guidance Document (06/2001). In this modeling, HERA reports the results of experimental measurements of the concentration of aerosol particles from a 2001 Procter & Gamble study. The following algorithm was used to model the absorbed dose:
	$Exp_{sys} = F_1 \cdot C' \cdot Q_{inh} \cdot t \cdot n \cdot F_7 \cdot F_8 / bw (mg/kg bw/day)$
	Where: $Exp_{sys} = dose absorbed via inhalation$ $F_1 = weight fraction of substance in product = 6\%$ (worst case assumption) $C' = product concentration = 0.35 mg/m^3$ $Q_{inh} = ventilation rate of user = 0.8 m^3/hr$ t = duration of exposure = 0.17 hr (10 minutes) n = product use frequency, in number of events per day = 1 $F_7 = weight fraction respirable = 100\%$ $F_8 = weight fraction absorbed or bioavailable = 75\%$ bw = body weight = 60 kg
Results:	The modeling resulted in an Exp_{sys} (inhalation of aerosols) = 0.04 µg/kg bw/day. Measured aerosol particles under 6.4 microns in size were generated upon spraying with typical surface cleaning spray products, resulting in a product concentration of 0.35 mg/m ³
Reference:	HERA. 2002. HERA-LAS Human and Environmental Risk Assessment: Linear Alkylbenzene Sulphonates, LAS. CAS No. 68411-30-3, Draft,
Reliability:	4 This score was assigned because the original Procter & Gamble study and the HERA model inputs were not available for review. However, the study and all assumptions were evaluated by HERA.

REFERENCES

- Abdel-Shafy, H.I., Azzam, A.M. and El-Gamal, I.M. 1988. Studies on the degradation of synthetic detergents by sewage. Bull. Environ. Contam. Toxicol. 4:310-316.
- Angelidaki, I., Haagensen, F. and Ahring, B.K. 2000a. Anaerobic transformation of LAS in continuous stirred tank reactors treating sewage sludge. 5th World CESIO Congress. V.2:1551-1557, Firenze, Italy.
- Angelidaki, I., Mogenen, A.S. and Ahring, B.K. 2000b. Degradation of organic contaminants found in organic waste. Biodegradation. 11:377-383.
- Arthur, J.W. 1970. Chronic effects of linear alkylate sulfonate detergent on *Gammarus pseudolimnaeus*, *Campeloma decisum* and *Physa integra*. *Water Res.* 4:251-257.
- Belanger, S.E., Bowling, J.W., Lee, D.M., LeBlanc, E.M., Kerr, K.M., McAvoy, D.C., Christman, S.C. and Davidson, D.H. 2002. Integration of aquatic fate and ecological responses to linear alkyl benzene sulfonate (LAS) in model stream ecosystems. Ecotoxicology and Environmental Safety. In Press.
- Berna, J.L., de Ferrer, J., Moreno, A., Prats, D. and Ruiz Bevia, F. 1989. The fate of LAS in the environment. Tenside Surfactants Detergents. 26(2):101-107.
- Bester, K., Theobald, N., and Schroeder, H.Fr. 2001. Nonylphenols, nonylphenol-ethoxylates, linear alkylbenzenesulfonates (LAS) and bis (4-schlorophenyl)–sulfone in the German Bight of the North Sea. Chemosphere. 45:817-826.
- Biolab SGS. 1989a. Primary skin irritation. Report No. T00428/4.
- Biolab SGS. 1989b. Primary skin irritation. Report No. T343.
- Biolab SGS. 1989c. Primary skin irritation. Report No. T00430/2.
- Biolab SGS. 1989d. Acute eye irritation. Report No. 00428/13.
- Biolab SGS. 1984. Acute eye irritation. Report No. T3R/27.
- Biolab SGS. 1983. Primary skin irritation. Report No. T116/2.
- Bishop, W.E. and Perry, R.L. 1981. Development and evaluation of a flow-through growth inhibition test with duckweed (*Lemna minor*). Pages 421-435 IN *Aquatic toxicology and hazard assessment: fourth conference*. ASTM STP 737.
- BKH. 1993. The use of existing toxicity data for estimation of the Maximum Tolerable Environmental Concentration of Linear Alkyl Benzene Sulfonate, Part I: Main report; Part II: Data base. Study carried out for ECOSOL, BKH Consulting Engineers, Delft, NL.
- Blok, J. and Balk, F. 1993. Attempts to bridge the gap between laboratory toxicity tests and ecosystems: a case study with LAS. The Science of the Total Environment. Supplement:1527-1538.
- Bock, K.J. and Wickbold, R. 1966. Auswirkungen der Umstellung auf leicht abbaubare Waschrohstoffe in einer großtechnischen Kläranlage und im Vorfluter. Vom Wasser 33:242-253.

- Brandt, K.K., Krogh, P.H., and Sorensen, J. 2003. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate: a field study. Environ. Toxicol. Chem. 22:821-829.
- Bressan, M., Brunetti, R., Casellato, S., Fava, G.C., Giro, P., Marin, M., Negrisolo, P., Tallandini, L., Thomann, S., Tosoni, L., Turchetto, M. and Campesan, G.C. 1989. Effects of linear alkylbenzene sulfonate (LAS) on benthic organisms. Tenside Surf. Det. 26:148-158.
- Buehler, E.V., Newmann, E.A., and King, W.R. 1971. Two-year feeding and reproduction study in rats with linear alkylbenzene sulfonate (LAS). Toxicology and Applied Pharmacology. 18:83-91.
- Canton, J.H. and Slooff, W. 1982. Substitutes for phosphate containing washing products: Their toxicity and biodegradability in the aquatic environment.
- Carlsen, L., Metzon, M.B. and Kjelsmack, J. 2002. Linear alkylbenzene sulfonates (LAS) in the terrestrial environment. The Science of the Total Environment. 290:225-230.
- Cavalli, L., and Valtorta, L. Surfactants in sludge-amended soil. Tenside Surfactants Detergents 36:22-28.
- Cavalli, L., Cassani, G. and Lazzarin, M. 1996a. Biodegradation of linear alkylbenzene sulphonate (LAS) and alcohol ethoxylate (AE). Tenside Surf. Det. 33:158-165.
- Cavalli, L., Cassani, G., Lazzarin, M., Maraschin, C., Nucci, G. and Valtorta, L. 1996b. Iso-branching of linear alkylbenzene sulphonate (LAS). Tenside Surf. Det. 33:393-398.
- Cavalli, L., Gellera, A. and Landone, A. 1993. LAS removal and biodegradation in a wastewater treatment plant. *Environmental Toxicology and Chemistry*. 12:1777-1788.
- Cavalli, L., Gellera, A., Lazzarin, A., Nucci, G.C., Romano, P., Ranzani, M. and Lorenzi, E. 1991. Linear alkylbenzene sulphonate removal and biodegradation in a metropolitan plant for water treatment. Riv. Ital. Sostanze Grasse. 68:75-81.
- Casellato, S., Aiello, R., Negrisolo, P.A. and Seno, M. 1992. Long-term experiment on *Branchiura sowerbyi* Beddard (Oligochaeta, Tubificidae) using sediment treated with LAS (Linear Alkylbenzene Sulphonate). Hydrobiologia. 232:169-173.
- Chattopahyay, D.N. and Konar, S.K. 1985. Acute and chronic effects of linear alkyl benzene sulfonate on fish, plankton, and worm. Environment & Ecology, 3:258-262.
- CHIMICA OGGI. 1998. LAS A modern classic surfactant. Article by Udo Schoenkaes in CHIMICA OGGI/Chemistry Today, Sept. 1998.
- Cohen, L., Vergara, R., Moreno, A. and Berna, J.L. 1995. Influence of 2-phenyl alkane and telralin content on solubility and viscosity of linear alkylbenzene sulfonate. JAOCS 72:115-122.
- Colin A. Houston. 2002. Surfactant Developments. Forecast to 2010. A Multiclient Study. Colin A. Houston & Associates, Inc., August 2002.
- Comber, S.D.W., Conrad, A.U., Hurst, K., Hoss, S., Webb, S., and Marshall, S. 2004. Chronic toxicity of sediment-associated linear alkylbenzene sulphonates (LAS) to freshwater benthic organisms. Manuscript in preparation.

- Comotto, R.M. 1982. Proposed standard practice for conducting renewal life cycle toxicity tests with Daphnia magna. Draft 1, August 1982, ASTM committee E-47. American Society for Testing and Materials, Philadelphia, PA.
- Cresswell, D.G., Baldock, G.A., Chasseaud, L.F. and Hawkins, D.R. 1978. Toxicology studies of linear alkylbenzene sulphonate (LAS) in rhesus monkeys. II. The disposition of [¹⁴C] LAS after oral or subcutaneous administration. Toxicology. 11:5-17.
- Cross, J. and Dekker, M. (ed.). 1977. Anionic surfactants: Chemical analysis. Vol.8. Pp. 111-115.
- Daly, I.W., Schroeder, R.E. and Killeen, J.C. 1980. A teratology study of topically applied linear alkylbenzene sulphonate in rats. Fd. Cosmet. Toxicol. 18:55-58.
- Debane, C. 1978. National Hygiene Laboratory; in: "Report on Studies on Synthetic Detergents", October 1978, Japan's Science and Technology Agency [in Japanese].
- de Ferrer, J., Moreno, A., Vaquero, M.T. and Comellas, J. 1997. Monitoring of LAS in direct discharge situations. Tenside Surf. Det. 34:278-283.
- DelValls, T.A., Forja, J.M. and Gomez-Parra, A. 2002. Seasonality of contamination, toxicity, and quality values in sediments from littoral ecosystems in the Gulf of Cadiz (SW Spain). Chemosphere. 46:1033-1043.
- Denger, K. and Cook, A.M. 1999. Linear alkylbenzene sulphonate (LAS) bioavailable to anaerobic bacteria as a source of sulphur. Journal of Applied Microbiology. 86:165-168.
- Dhaliwal, A.A., Campione, A., and Smaga, S. 1977. Effect of linear alkylbenzene sulfonate (C_{11.2} LAS) on the morphology and physiology of *Plectonema boryanum* and *Chlamydomonas reinhardi*. J. Phycol. 13:18.
- DiCorcia, A., Samperi, R., Belloni, A., Marcomini, A., Zanette, M., Lemr, K. and Cavalli, L. 1994. LAS pilot study at the "Roma-Nord" sewage treatment plant and in the Tiber river. La Rivista Italiana Delle Sostanze Grasse. LXXI:467-475.
- ECETOC. 1993. Environmental hazard assessment of substances. Technical Report No. 51. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels.
- Elsgaard, L., Petersen, S.O. and Debosz, K. 2001a. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology. Environmental Toxicology and Chemistry. 20:1656-1663.
- Elsgaard, L., Petersen, S.O., and Debosz, K. 2001b. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 2. Effects on soil microbiology as influenced by sewage sludge and incubation time. Environmental Toxicology and Chemistry. 20:1664-1672.
- Endo, T., Furuido, Y., Namie, K., Yamamoto, N., Hasunuma, H. and Ueda, K. 1980. Studies of the chronic toxicity and teratogenicity of synthetic surfactants. Ann. Rep. Tokyo Metrop. Res. Inst. Environ. Prot. 236-246 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- ERASM. 2000. Long-term toxicity of LAS on Gammarus pulex. Internal Report AISE/CESIO, Brussels.

- European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition.
- European Commission. 2000b. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929).
- European Commission. 2000c. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Huels AG, 1/90, N. Scholz, unpublished.
- European Commission. 2000d. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Huels AG, 2/87, N. Scholz, unpublished.
- European Commission. 2000e. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Maki, A.W. 1981. A Laboratory model ecosystem approach to environmental fate and effects studies. Unpublished Internal Report, Environmental Safety Department Procter and Gamble Company, Cincinnati, Ohio.
- European Commission. 2000f. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, AT/FU/80/90.
- European Commission. 2000g. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, AL/10.
- European Commission. 2000h. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, AL/12.
- European Commission. 2000i. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, AT/17.
- European Commission. 2000j. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, CT/R118/03.
- European Commission. 2000k. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, CT/R153/01, CT/R153/02.
- European Commission. 2000l. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, CT/R89/01, CT/R89/02.
- European Commission. 2000m. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, ETS 311.
- European Commission. 2000n. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, P2636.01.
- European Commission. 2000o. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing The Procter & Gamble Company, unpublished data, Reports No. RCC-2315547.
- European Commission. 2000p. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 22581, 28361.
- European Commission. 2000q. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 22852, 23613, 23612.

- European Commission. 2000r. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 23618, 22853, 23611, 23276.
- European Commission. 2000s. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 27896, 27897, 27915.
- European Commission. 2000t. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 29101.
- European Commission. 2000u. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 31340.
- European Commission. 2000v. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 34845.
- European Commission. 2000w. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Shell Research Ltd, SBGR.81.083, RR Stephenson.
- European Union (EU). 1997. EU Risk Assessment Report for Linear Alkyl Benzene. Revision May 1997.
- Fairchild, J.F., Dwyer, F.J., LaPoint, T.W., Burch, S.A. and Ingersoll, C.G. 1993. Evaluation of a laboratory-generated NOEC for linear alkylbenzene sulfonate in outdoor experimental streams. Environmental Toxicology and Chemistry. 12:1763-1775.
- Federle, T.W. and Itrich, N.R. 1997. Comprehensive approach for assessing the kinetics of primary and ultimate biodegradation of chemicals in activated sludge: Application to linear alkylbenzene sulfonate. Environ. Sci. Technol. 31:1178-1184.
- Feijtel, T.C.J., Matthijs, E., Rottiers, A., Rijs, G.B.J., Kiewiet, A. and de Nijs, A. 1999. AIS/CESIO environmental surfactant monitoring programme. Part 1: LAS monitoring study in "de Meer" STP and receiving river "Leidsche Rijn" Chemosphere 30:1053-1066.
- Feijtel, T.C.J., Struijs, J., and Matthijs, E. 1999. Exposure modeling of detergent surfactants Prediction of 90th-percentile concentrations in the Netherlands. Environmental Toxicology and Chemistry. 18:2645-2652.
- Feijtel, T.C.J. and van de Plassche, E.J. 1995. Environmental Risk Characterization of 4 Major Surfactants used in the Netherlands. RIVM Report No. 679101 025.
- Figge, K. and Schoberl, P. 1989. LAS and the application of sewage sludge in agriculture. Tenside Surf. Det. 26:122-128.
- Folke, J., Cassani, G., de Ferrer, J., Lopez, I., Karlsson, M.O., and Willumsen, B. 2003. Linear alkylbenzene sulphonates, branched dodecylbenzene sulphonates and soap analyzed in marine sediments from the Baltic proper and Little Belt. Tenside Surf. Det. 40:17-24.
- Fox, K. 2001. Environmental risk assessment under HERA: challenges and solutions. Journ. Comp. Esp. Deterg. 31:213-223.

- Fox, K., Holt, M., Daniel, M., Buckland, H. and Guymer, I. 2000. Removal of linear alkylbenzene sulfonate from a small Yorkshire stream. Contribution to GREAT-ER project #7. Sci. Total Environ. 251:265-275.
- Fujii, T., Sakamoto, Y., Abe, Y., Mikurita, H., Yuzawa, K. and Hiraga, K. 1977. Pathological examination of rats fed with linear alkylbenzene sulfonate for their lifespan. Ann. Rep. Tokyo Metrop. Res. Lab. Public Health. 28:85-108 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Games, L.M. 1982. Field validation of exposure analysis modelling systems (EXAMS) in a flowing stream. Ch. 18. In: Dickson, K.L., Maki, A.W. and Cairns, J. (ed.). 1981. Modelling and Fate of Chemicals in the Aquatic Environment. 4th Meeting. Sci. Ann Arbor Michigan Pp. 325-346.
- Gandolfi, C., Facchi, A., Whelan, M.J., Cassarri, G., Tartari, G. and Marcomini, A. 2000. Validation of the GREAT-ER model in the River Lambro catchment. 5th World CESIO Congress. V.2:1370-1379.
- Gejlsbjerg, B., Klinge, C., Samsoe-Petersen, L., and Madsen, T. 2001. Toxicity of linear alkylbenzene sulfonates and nonylphenol in sludge-amended soil. Environmental Toxicology and Chemistry. 20:2709-2716.
- Grieve, A.M. and Pitman, M.G. 1978. Salinity damage to Norfolk Island pines caused by surfactants. III. Evidence for stomatal penetration as the pathway of salt entry to leaves. Aust. J. Plant. Physiol. 5:397-413.
- Gupta, B.N., Mathur, A.K., Agarwal, C., and Singh, A. 1986. Effect of synthetic detergent on certain enzymes in liver and kidney in male rats. Arogya-J. Health Sci. 12:50-54.
- Haigh, S.D. 1996. A review of the interaction of surfactants with organic contaminants in soil. The Science of the Total Environment. 185:161-170.
- Hamwijk, C. 2002. Literature study: Exposure and possible indirect effects of aerosol borne surfactants on coastal vegetation. TNO Chemistry report, Study number 02-4077/01. Prepared for CEFIC ERASM.
- Hand, V.C., Rapaport, R.A., and Pittinger, C.A.. 1990. First validation of a model for the adsorption of linear alkylbenzenesulfonate (LAS) to sediment and comparison to chronic effects data. Chemosphere. 21:741-750.
- Havermann, H. and Menke, K.H. 1959. Biological study of the water-soluble surface-active substances.
 Fette. Seifen. Anstrichmittel 61:429-434. (in German); cited in IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland. Original article in Japanese.
- Hendricks, M.H. 1970. Measurement of enzyme laundry detergent product dust levels and characteristics in consumer use. J. Am. Oil Chem. Soc. 47:207-211.
- Henkel KGaA, Biological Research and Product Safety/Ecology, unpublished results of study conducted in 1984; test substance Fi 5829.
- Henkel KGaA, Biological Research and Product Safety/Ecology: unpublished results (Test substance number Fi 5959).

- HERA. 2004. HERA-LAS Human and Environmental Risk Assessment: Linear Alkylbenzene Sulphonates, LAS. CAS No. 68411-30-3, Version 2.0, May 2004.
- Hermann, R., Gerke, J. and Ziechmann, W. 1997. Photodegradation of the surfactants Nadodecylbenzenesulfonate and dodecylpyridinium-chloride as affected by humic substances. Water, Air, and Soil Pollution. 98:45-55.
- Heywood, R., James, R.W., and Sortwell, R.J. 1978. Toxicology studies of linear alkylbenzene sulphonate (LAS) in rhesus monkeys. I. Simultaneous oral and subcutaneous administration for 28 days. Toxicology. 11:245-250.
- Hidaka, H., Kubata, H., Gratzel, M., Serpone, N. and Pelizzetti, E. 1985. Photodegradation of surfactants. I. Degradation of sodium dodecyl sulfonate in aqueous semiconductor dispersions. Nouveau J. Chemie. 9:67-69.
- Hodgman, C.D. 1961. Handbook of Chemistry and Physics, 43rd edition. The Chemical Rubber Publishing Company, Cleveland, Ohio.
- Holman, W.F. and Macek, K.J. 1980. An aquatic safety assessment of linear alkylbenzene sulfonate (LAS): Chronic effects on fathead minnows. Transactions of the American Fisheries Society. 109:122-131.
- Holmstrup, M. and Krogh, P.H. 2001. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 3. Sublethal effects on soil invertebrates. Environmental Toxicology and Chemistry. 20:1673-1679.
- Holmstrup, M. and Krogh, P.H. 1996. Effects of an anionic surfactant, linear alkylbenzene sulfonate, on survival, reproduction and growth of the soil-living collembolan *Folsomia fimetaria*. Environmental Toxicology and Chemistry. 15:1745-1748.
- Holt, M.S., Daniel, M., Buckland, H. and Fox, K.K. 2000. Monitoring studies in the UK designed for validation of the Geo-Referenced Exposure Assessment Tool for European Rivers (GREAT-ER), 5th World CESIO Congress. V.2:1358-1369, Firenze, Italy.
- Holt, M.S., Water, J., Comber, M.H.I., Armitage, R., Morris, G. and Nebery, C. 1995. AIS/CESIO environmental surfactant monitoring programme. SDIA sewage treatment pilot study on LAS. Wat. Res. 29:2063-2070.
- Holt, M.S., Matthijs, E. and Waters, J. 1989. The concentrations and fate of linear alkylbenzene sulphonate in sludge amended soils. Wat. Res. 23:749-759.
- Hooftman, R.N. and van Drongelen-Sevenhuijsen, D. 1990. The acute toxicity of E-3473.01 (ETS 311) to *Daphnia magna*. TNO Netherlands Organization for Applied Research. TNO Report No. R 89/403.
- Hopper, S.S., Hulpieu, H.R. and Cole, V.V. 1949. Some toxicological properties of surface-active agents. Journal of the American Pharmaceutical Association. 38:428-432.
- Howes, D. 1975. The percutaneous absorption of some anionic surfactants. J. Soc. Cosmet. Chem. 26:47-63.

Huber, L. 1989. Conclusions for an ecological evaluation of LAS. Tenside Surf. Det. 26:71-74.

August 11, 2005

- Huber, W., Zeiris, F.J., Feind, D., and Neugebaur, K. 1987. Ecotoxicological evaluation of environmental chemicals by means of aquatic model ecosystems (translation). Bundesministerium fuer Forschung and Technologie, Research Report (03-7314-0).
- Huddleston, R.L. and Allred, R.C. 1963. Microbial oxidation of sulfonated alkylbenzenes. Dev. Ind. Microbiol. 4:24-38.
- Huntsman. 2002. Report of melting point analysis for NANSA HS 85/5. Cover memo from A. Ashworth to K.B. Sellstrom dated April 12, 2002.
- Iimori, M., Ogata, T. and Kudo, K. 1972. Eye irritation testing of surface active agents in experimental animals. Jour. Jap. Oil Chem. Soc. 22:807-813 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Ikawa, M., Yoneyama, M., Nakao, T. and Hiraga, K. 1978. Uptake of organic acid and organic base by renal cortical slices of rats treated with LAS and ABS. Ann. Rep. Tokyo Metr. Res. Lab. P.H. 29:51-54 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Imahori, A., Kinagawa, T. and Shiobara, S. 1976. Effects of linear alkyl benzene sulfonate (LAS) applied dermally to pregnant mice and their fetuses. Jpn. J. Public Health. 23:68-72 (in Japanese); cited in IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Inoue, K., Shibata, T., Hamano, Y., Oda, Y., Kuwano, A., Yamamoto, H., Mitsuda, B. and Kunita, N. 1977. *In vivo* cytogenetic tests of some synthetic detergents in mice. Ann Res. Osaka Prefect Inst. Public Health. 8:17-24 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Inoue, IK. and Sunakawa, T. 1979. Mutagenicity tests of surfactants. Jpn Fragrance J. 38:67-75 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: for Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland.
- Ishii, Y., Samejima, Y., Saji, F. and Nomura, T. 1990. Effect of alcohol sulphate, linear alkylbenzene sulfonate and natural soap on the development of fertilized eggs of the mouse *in vitro*. Mutation Research. 242:151-155.
- Ito, R., Kawamura, H., Chang, H.S., Kudo, K., Kajiwara, S., Toida, S., Seki, Y., Hashimoto, M. and Fukushima, A. 1978. Acute, subacute and chronic toxicity of magnesium linear alkylbenzene sulfonate (LAS-Mg). J. Med. Soc. Toho, Japan. 25 (5-6):850-875 (in Japanese). Referenced in IPCS, Environmental Health Criteria 169. Linear Alkylbenzene Sulfonates and Related Compounds.
- Japan Soap and Detergent Association (JSDA). Annual Reports of Environmental Issues (Years 1999, 2000, 2001, 2002).
- Jensen, J. and Krogh, P.H. 1999. Ecological assessment of sewage sludge application. Proceedings, Nordiska Jordbruks forskares Forening, Seminar 292. Jokionen, Finland, November 23-25, 1998, pp. 98-100.

- Jensen, J., Lokke, H., Holmstrup, M., Krogh, P.H. and Elsgaard, L. 2001. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 5. Probabilistic risk assessment of linear alkylbenzene sulfonates in sludge-amended soils. Environmental Toxicology and Chemistry. 20:1690-1697.
- Kaestner, W. 1997. Local tolerance (animal tests): mucous membranes and skin. In: Anionic Surfactants: Biochemistry, Toxicology, Dermatology. 2nd Edition.
- Kaestner, W., Henkel KGaA, unpublished data, Report No. 870553 (1987).
- Kay, J.H., Kohn and, F.E. and Calandra, J.C. 1965. Subacute oral toxicity of a biodegradable, linear alkylbenzene sulfonate. Toxicology and Applied Pharmacology. 7:812-818.
- Kimerle, R.A. 1989. Aquatic and terrestrial ecotoxicology of linear alkylbenzene sulfonate. Tenside Surfactants Detergents, 26:169-176.
- Kimerle, R.A., Macek, K.J., Sleight, B.H. and Burrows, M.E. 1981. Bioconcentration of linear alkylbenzene sulfonate (LAS) in bluegill (*Lepomis macrochirus*). Wat. Res. 15:251-256.
- Kimerle, R.A. and Swisher, R.D. 1977. Reduction of aquatic toxicity of linear alkylbenzene sulfonate (LAS) by biodegradation. Water Research. 11:31-37.
- Kinney, L.A. 1985. Approximate lethal concentrations (ALCs) by inhalation of sodium lauryl sulfate & sodium dodecylbenzene sulfonate. Dupont Haskell Laboratory Report No. 474-84.
- Kishi, M., Satoh, S., Horiguchi, Y. and Ito, K. 1984. Effects of surfactants on bone marrow cells. Bull. Kanagaw Public Health Lab. 14:57-58.
- Knaebel, D.B., Federle, T.W. and Vestal, J.R. 1990. Mineralisation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in 11 contrasting soils. Envir. Toxicol. Chem. 9:981-988.
- Krogh, P.H., Holmstrup, M., Jensen, J., and Peterssen, S.O. 1997. Ecotoxicological assessment of sewage sludge in agricultural soil. Working Report No. 69. Ministry of Environment and Energy, Danish Environmental Protection Agency.
- Kuchler, T. and Schnaak, W. 1997. Behaviour of linear alkylbenzene sulfonates (LAS) in sandy soils with low amounts of organic matter. Chemosphere. 35:153-167.
- Kynoch, S.R. 1986a. Acute oral toxicity to rats: P-500 N-Na. Huntingdon Research Cener Report. No. 86546D/PEQ 7/AC.
- Kynoch, S.R. 1986b. Acute dermal toxicity to rats of P-500 N-Na. Huntingdon Research Center. Report No. 86718D/PEQ 8/AC.
- Larson, R.J. and Maki, A.W. 1982. Effect of LAS on the structure and function of microbial communities in model ecosystems. ASTM STP 766:120-136.
- Leo, A.J. and Hansch, C. 1979. Substituent Constants for Correlation Analysis in Chemistry and Biology. J. Wiley & Sons, N.Y.

- Leon, V.M., Gonzalez-Mazo, E., Pajares, J.M.F., and Gomez-Parra, A. 2001. Vertical distribution profiles of linear alkylbenzene sulfonates and their long-chain intermediate degradation products in coastal marine sediments. Environmental Toxicology and Chemistry. 20:2171-2178.
- Lewis, M.A. 1990. Chronic toxicities of surfactants and detergent builders to algae: a review and risk assessment. Ecotoxicology and Environmental Safety. 20:123-140.
- Lewis, M.A. 1986. Comparison of effects of surfactants on freshwater phytoplankton communities in experimental enclosures and on algal population growth in the laboratory. Environ. Toxicol. Chem. 5:319-332.
- Lewis, M.A. and Hamm, B.G. 1986. Environmental modification of the photosynthetic response of lake plankton to surfactants and significance to a laboratory-field comparison. Wat. Res. 20:1575-1582.
- Lewis, M.A. and Perry, R.L. 1981. Acute toxicities of equimolar and equitoxic surfactant mixtures to *Daphnia magna* and *Lepomis macrochirus*. Aquatic Toxicology and Hazard Assessment: Fourth Conference, ASTM STP 737, D.R. Branson and K.L. Dickson, Eds., American Society for Testing and Materials, pp. 402-418.
- Lewis, M.A., Pittinger, C.A., Davidson, D.H., and Ritchie, C.J. 1993. In-situ response of natural epiphyton to an anionic surfactant and an environmental safety assessment for phytotoxic effects. Environ. Toxicol. Chem. 12:1803-1812.
- Lewis, M.A. and Suprenant, D. 1983. Comparative acute toxicities of surfactants to aquatic invertebrates. Ecotoxicol. Environ. Safety. 7:313-322.
- Liggett, M.P. and Parcell, B.I. 1986a. Irritant effects on rabbit skin of P-500 N-Na. Huntingdon Research Center. Report No. 86400D/PEQ 9/SE.
- Liggett, M.P. and Parcell, B.I. 1986b. Irritant effects on the rabbit eye of P-500 N-Na. Huntingdon Research Center Report No. 86570D/PEQ 10/SE.
- Lopez-Zavalla, A., de Aluja, A.S., Elias, B., Manjarrez, L., Buchmann, A., Mercado, L. and Caltenco, S. 1975. The effects of ABS, LAS and AOS detergents on fish, domestic animals and plants. Progress in Water Technology. 7:73-82.
- Lyman, W.J. 1985. Environmental exposure from chemicals, V.I, p.31, Neely, W.B., and Blau, G.E., editors. CRC Press. Boca Raton.
- Mackay, D., Di Guardo, A., Paterson, S., Kicsi, G., Cowan, C.E. and Kane, D.M. 1996. Assessment of chemical fate in the environment using evaluative, regional and local-scale models: illustrative application to chlorobenzene and linear alkylbenzene sulfonates. Environmental Toxicology and Chemistry 15:1638-1648.
- Macek, K.J. and Sleight, B.H. III. 1977. Utility of toxicity tests with embryos and fry of fish in evaluating hazards associated with the chronic toxicity of chemicals to fishes. Aquatic Toxicology and Hazard Evaluation, ASTM STP 634. Mayer, F.L. and Hamelink, J.L, Eds. American Society for Testing and Materials, pp. 137-146.
- Maki, A.W. 1981. A. Laboratory model ecosystem approach to environmental fate and effects studies. Unpublished Internal Report, Environmental Safety Department Procter and Gamble Company, Cincinnati, Ohio.

- Maki, A.W. 1979. Correlations between *Daphnia magna* and fathead minnow (*Pimephales promelas*) chronic toxicity values for several classes of test substances. J. Fish. Res. Board Can. 36:411-421.
- Maki, A.W. 1978. Development of a chronic toxicity test wit the dipteran midge, *Paratanytarsus parthenogenica*. Presented at the Annual Meeting of the Entomological Society of America, Washington, DC, December.
- Mampel, J., Hitzer, T., Ritter, A. and Cook, A.M. 1998. Desulfonation of biotransformation products from commercial linear alkylbenzene sulfonates. Environ. Toxicol. Chem. 17:1960-1963.
- Marin, M.G., Pivotti, L., Campesan, G., Turchetto, M. and Tallandini, L. 1994. Effects and fate of sediment-sorbed linear alkylbenzene sulphonate (LAS) on the bivalve mollusk Mytilus galloprovincialis Lmk. Wat. Res. 28:85-90.
- Masabuchi, M., Takahashi, A., Takahashi, O. and Hiraga, K. 1976. Cytogenetic studies and dominant lethal tests with long term administration of butylated hydroxytoluene (BHT) and linear alkylbenzene sulfonate (LAS) in mice and rats. Ann. Rep. Tokyo Metrop. Res. Lab. Public Health. 27:100-104 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Mathur, A.K., Gupta, B.N., Singh, A., and Shanker, R. 1986. Toxicological evaluation of a synthetic detergent after repeated oral ingestion in rats. Biol. Mem. 12:187-191.
- Matsuura, T. and Smith, J.M. 1970. Kinetics of photodecomposition of dodecyl benzene sulfonate. Ing. Eng. Chem. Fund. 9:252-260.
- Matthies, W., Henkel KgaA, unpublished data, Report No. 890356 (1989).
- Matthijs, E., Holt, M.S., Kiewiet, A. and Rijs, G.B.J. 1999. Environmental monitoring for linear alkylbenzene sulfonate, alcohol ethoxylate, alcohol ethoxy sulfate, alcohol sulfate, and soap. Environmental Toxicology and Chemistry. 18:2634-2644.
- McAvoy, D.C., Dyer, S.D., Fendinger, N.J., Eckhoff, W.S., Lawrence, D.L. and Begley, W.M. 1998. Removal of alcohol ethoxylates, alkyl ethoxylate sulfates, and linear alkylbenzene sulfonates in wastewater treatment. Environ. Toxicol. Chem. 17:1705-1711.
- McAvoy, D.C., Eckhoff, W.S. and Rapaport, R.A. 1993. Fate of linear alkylbenzene sulfonate in the environment. Environ. Toxicol. Chem. 12:977-987.
- Michael, W.R. 1968. Metabolism of linear alkylate sulfonate and alkyl benzene sulfonate in albino rats. Toxicology and Applied Pharmacology. 12:473-485.
- Mieure, J.P., Waters, J., Holt, M.S. and Matthijs, E. 1990. Terrestrial safety assessment of linear alkylbenzene sulfonate. Chemosphere. 21:251-262.
- Monsanto Company. 1972a. Linear alkylbenzene sodium sulfonate Alkylate 215 Lot CC 6772S Acute toxicity screen. Project No. Y-72-274. Unpublished report.
- Monsanto Company. 1972b. Linear alkylbenzene sodium sulfonate Alkylate 222L Lot CC 6773S Acute toxicity screen. Project No. Y-72-275. Unpublished report.

- Monsanto Company. 1971. Linear alkylbenzene sodium sulfonate Alkylate 225 Lot CC 6450 Acute toxicity screen. Project No. Y-71-119. Unpublished report.
- Moreno, A., de Ferrer, J. and Berna, J.L. 1990. Biodegradability of LAS in a sewer system. Tenside Surf. Det. 27:312-315.
- Mortensen, G.K., Elsgaard, H., Ambus, P., Jensen, E.S. and Gron, C. 2001. Influence of plant growth on degradation of linear alkylbenzene sulfonate in sludge-amended soil. J. Environ. Qual. 30:1266-1270.
- Mount, D.I. and Norberg, T.J. 1983. A seven-day life cycle cladoceran toxicity test. Pre-publication. USEPA (Duluth).
- Murmann, P. 1988. Prufung auf hautsensibilisierende Wirkung am Meerschweinchen von Marlon A 350. Huels Report No. 1387.
- Murmann, P. 1984a. Akute orale Toxizitat von Marlon A 330 fur Ratten. Huels Report No. 0186.
- Murmann, P. 1984b. Akute orale Toxizitat von Marlon A 386 fur Ratten. Huels Report No. 0191.
- Murmann, P. 1983a. Prufung der akuten Hautreizwirkung von Marlon A 350. Huels Report No. 0171.
- Murmann, P. 1983b. Prufung der akuten Augen-und Schleimhautreiz Wirkung von Marlon A 350. Huels Report No. 0172.
- Murmann, P. 1984c. Akute orale Toxizitat von Marlon A 350 fur Ratten. Huels Report No. 209.
- Navas, J.M., Gonzalez-Mazo, E., Wenzel, A., Gomez-Parra, A. and Segner, H. 1999. Linear alkylbenzene sulfonates and intermediate products from their degradation are not estrogenic. Marine Pollution Bulletin. 38:880-884.
- Nielsen, A.M., Britton, L.N., Beall, C.E., McCormick, T.P. and Russell, G.L. 1997. Biodegradation of coproducts of commercial linear alkylbenzene sulfonate. Environ. Sci. Technol. 31:3397-3404.
- Nielsen, A.M. and Huddleston, R.L. 1981. Ultimate biodegradation of linear alkylbenzene sulfonate alkyl and ring carbon. Developments in Industrial Microbiology. 22:415-424.
- Nishiyama, N., Yamamoto, A. and Takei, T. 2003. 37th Annual meeting of the Japan Society of Water Environment, Kumamoto, Japan.
- Nolen, G.A., Klusman, L.W., Patrick, L.F. and Geil, R.G. 1975. Teratology studies of a mixture of tallow alkyl ethoxylate and linear alkylbenzene sulfonate in rats and rabbits. Toxicology. 4:231-243.
- Nusair, T.L., Danneman, P.J., Stotts, J., and Bay, P.H.S. 1988. Consumer products: Risk assessment process for contact sensitization. Toxicologist. 8:258. (Abstract).
- Oba, K., Mori, A. and Tomiyama, S. 1968. Biochemical studies of n-alpha-olefin sulfonates (II) Acute toxicity, skin and eye irritation, and some other physical properties. Journ. Jap. Oil Chem. Soc. 17:628-634. (In Japanese) cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.

- Oser, B.L. and Morgareidge, K. 1965. Toxicologic studies with branched and linear alkyl benzene sulfonates in rats. Toxicology and Applied Pharmacology. 7:819-825.
- Painter, H.A. and Zabel, T.F. 1988. Review of the environmental safety of LAS. Wrc Medmendham, UK. Report No. CO 1659-M/1/EV 8658. Water Research Center.
- Palmer, A.K., Cozens, D.D., Batham, P., and Cherry, C.P. 1974. Effect of CLD on reproductive function of multiple generations in the rat. Final Report. Report No. LF010/731029.
- Palmer, A.K. and Lovell, M.R. 1971a. Effect of LAS detergent on pregnancy of the rat. Report No. 4331/71/487.
- Palmer, A.K. and Lovell, M.R. 1971b. Effect of LAS detergent on pregnancy of the mouse. Report No. 4330/71/486.
- Palmer, A.K. and Neuff, A.M. 1971c. Effect of LAS detergent on pregnancy of the New Zealand white rabbit. Report No. 4387/71/543.
- Palmer, A.K., Readshaw, M.A. and Neuff, A.M. 1975a. Assessment of the teratogenic potential of surfactants. Part I LAS, AS, and CLD. Toxicology. 3:91-106.
- Palmer, A.K., Readshaw, M.A. and Neuff, A.M. 1975b. Assessment of the teratogenic potential of surfactants. Part III - Dermal application of LAS and soap. Toxicology. 4:171-181.
- Petrovic, M., Fernandez-Alba, A.R., Borrull, F., Marce, R.M., Mazo, E.G. and Barcelo, D. 2002. Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environmental Toxicology and Chemistry. 21:37-46.
- Pickering, Q.H. and Thatcher, T.O. 1970. The chronic toxicity of linear alkylate sulfonate (LAS) to *Pimphales promelas*, Rafinesque. J. Water Pollut. Control Fed. 42:243-254.
- Pittinger, C.A., Woltering, D.M. and Masters, J.A. 1989. Bioavailability of sediment-sorbed and aqueous surfactants to *Chironomus riparius* (midge). Environmental Toxicology and Chemistry. 8:1023-1033.
- Prats, D., Rodriquez, M., Llamas, J.M., De La Muela, M.A., de Ferrer, J., Morena, A. and Berna, J.L. 2000. The use of specific analytical methods to assess the anaerobic biodegradation of LAS. 5th World CESIO Congress V2:1655-1658, Firenze, Italy.
- Procter & Gamble. 2004. Ceriodaphnia sp. Chronic toxicity test. Unpublished report, September 9, 2004.
- Rapaport, R.A. and Eckhoff, W.S. 1990. Monitoring linear alkylbenzene sulfonate in the environment: 1973-1986. Environ. Toxicol. Chem. 9:1245-1257.
- RBM. 1985. Test di sensibilizzazione cutanea nella cavia. RBM Exp. No. 2076.
- Richard, B., Grieu, P., Badot, P.M., and Garrec, J.P. 1996. Influence of marine salts on the localization and accumulation of surfactant in the needles of *Pinus halepensis* Mill. Ann. Sci. For. 53:921-930.
- Roberts, D.W. 2000. Use of octanol/water partition coefficient as hydrophobicity parameters in surfactant science. 5th World CESIO Congress 2:1517-1524, May-June 2000, Firenze, Italy.

August 11, 2005

Roberts, D.W. 1991. QSAR issues in aquatic toxicity of surfactants. Sci. Total Environ. 109/110:557-568.

- Routledge, E.J. and Sumpter, J.P. 1996. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry. 15:241-248.
- Ruffo, C., Fedrigucci, M.G., Valtorta, L. and Cavalli, L. 1999. Biodegradation of anionic and non-ionic surfactants by CO₂ evolution. Acclimated and non-acclimated inoculum. Riv. It. Sostanze Grasse. LXXVI: 277-283.
- Sadai, M. and Mizuno, N. 1972. Effect of long term topical application of some anionic surfactants on the skin, oral mucous membrane, and tongue. Jpn Journal Dermatol. 82:207-221. (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Sanchez Leal, J., Garcia, M.T., Tomas, R., de Ferrer, J. and Bengoechea, C. 1994. Linear alkylbenzene sulfonate removal. Tenside Surf. Det. 31:253-256.
- Sanz, J.L., Rodriguez, M., Amils, R., Berna, J.L., de Ferrer, J. and Moreno, A. 1999. Anaerobic biodegradation of LAS (Linear Alkylbenzene Sulfonate): Inhibition of the methanogenic process. La Rivista Holiana Delle Sostanze Grasse. LXXVI:307-311.
- Sarrazin, L., Arnoux, A., Rebouillon, P. and Monod, J. 1997. Biodegradation of linear alkylbenzenesulfonate (LAS) in briny water and identification of metabolites using HPLC analysis by direct injection of samples. Toxicological and Environmental Chemistry. 58:209-216.
- Sato, K., Ando, H., Yuzawa, K. and Hiraga, K. 1972. Studies on toxicity of synthetic detergents (III) Examination of teratogenic effects of alkyl benzene sulfonates spread on the skin of mice. Ann. Rep. Tokyo Metrop. Res. Lab. Public Health. Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Schmidt, E.J. and Kimerle, R.A. 1981. New design and use of a fish metabolism chamber. In: Branson, D.R. and Dickson, K.L. (eds.). Aquatic Toxicology and Hazard Assessment: Fourth Conference, ASTM STP 737, 436-448.
- Schoeberl, P. 1989. Basic principles of LAS biodegradation. Tenside Surf. Detergents 26:86-94.
- Schoeberl, P. 1993a. Bestimmung der Mutagenitat von Marlon A 390 im Salmonella/Sauger-Mikrosomen-Mutagenitatstest nach Ames. Huels Final Report No. AM-93/12.
- Schoeberl, P. 1993b. Bestimmung der biologischen Abbaubarkeit von Marlon A 390 im DOC-DIE AWAY Test. Huels Final Report No. DDA-21.
- Schoeberl, P. 1993c. Bestimmung der biologischen Abbaubarkeit von Marlon A 390 im DOC-DIE AWAY Test. Huels Report No. DDA-32.
- Schoeberl, P. 1991. Coupling the OECD confirmatory test with continuous ecotoxicity tests. Tenside Surf. Det. 28:6-14.
- Scholz, N. 1992. Bestimmung der Auswirkungen von Marlon A 390 auf das Wachstum von *Scenedesmus subspicatus*. Huels Final Report No. AW-291.
- August 11, 2005

- Scholz, N. 1993. Bestimmung der bacterientoxizitat von Marlon A 390 in Pseudomonas-zellvermehrungs-Hemmtest. Huels-Final Report No. PZ-93/10.
- Scholz, N. 1994. Bestimmung der Auswirkungen von Marlon A 350 auf das Wachstum von Scenedesmus subspicatus 86.81. SAG (Algenwachstumshemmtest nach Richtlinie 92/69/EWG) Huels Final Report No. AW-372.
- Shiobara, S. and Imahori, A. 1976. Effects of linear alkylbenzene sulfonate orally administered to pregnant mice and their fetuses. J. Food Hyg. Soc. Jpn. 17:295-301 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Smith, D.L. 1997. Impact of composition on the performance of sodium linear alkylbenzenesulfonate (NaLAS). JAOCS 74:837-845.
- Snedecor, G.W. and Cochran, W.G. 1967. Statistical Methods. 6th Edition. Iowa State University Press, Ames, IA.

Soap and Detergent Association (SDA). 1996. Linear Alkylbenzene Sulfonate.

- Sunakawa, T., Ikida, Y. and Okamoto, K. 1979. Absorption, distribution, metabolism, and excretion of linear alkylbenzene sulfonate in rats. J. Jpn. Oil Chem. Soc. 39:59-68 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Sunakawa, T., Inoue, K. and Okamoto, K. 1981. Studies on the mutagenicity of surfactants, mutagenicity of surfactants following activation with various liver homogenates (S-9) and mutagenicity in the presence of norharman. Hyg. Chem. 27:204-211. Cited in IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland. Original article in Japanese.
- Survey data for Industry Coalition for the SIDS Assessment of LAS. 2002.
- Swisher, R.D. 1987. Surfactant Biodegradation, second edition. Surfactant Science Series, Volume 18. Marcel Dekker, Inc. New York.
- Swisher, R.D., Gledhill, W.E., Kimerle, R.A. and Taulli, T.A. 1978. Carboxylated intermediates in the biodegradation of linear alkylbenzene sulfonates (LAS). VII International Congress on Surface Active Substance, Proceedings, Moscow, 1976 4:218-230.
- Tabor, C.F. and Barber, L.B. 1996. Fate of linear alkylbenzene sulfonate in the Mississippi River. Environ. Sci. Technol. 30:161-171.
- Takahashi, M., Sato, K., Ando, H., Kubo, Y. and Hiraga, K. 1975. Teratogenicity of some synthetic detergents and linear alkylbenzene sulfonate (LAS). Ann. Rep. Tokyo Metrop. Res. Lab. Public Health 26: 67-78 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Tattersfield, L.J, Mitchell, C.G., Holt, M., Girling, A.G., Pearson, N. and Ham, L. 1996. Linear alkylbenzene (LAS): Fate and effects in outdoor artificial streams and pools – An extended study. Internal report. Shell Research and Technology Centre, Thornton. Document No. TNER.96.005.

- Tattersfield, L.J., Holt, M. and Girling, A.G. 1995. The fate and effects of linear alkylbenzene sulfonate (LAS) in outdoor artificial streams and pools. External report. Shell Research Limited, Sittingbourne Research Centre. Document No. SBER.95.009.
- Taylor, M.J. 1985. Effect of diet on the sensitivity of *Daphnia magna* to linear alkylbenzene sulfonate. In: Cardwell, R.D., Purdy, R. and Bahner, R.C (ed.) Aquatic Toxicology and Hazard Assessment. Seventh Symposium Pp. 53-72. ASTM STP 854, America Society for Testing and Materials, Philadelphia.
- Temara, A., Carr, G., Webb, S., Versteeg, D. and Feijtel, T. 2001. Marine risk assessment: linear alkylbenzene sulfonate (LAS) in the North Sea. Marine Poll. Bulletin. 42:635-642.
- Temmick, H. and Klapwijk, B. 2004. Fate of LAS in activated sludge plants. Water Research 38:903-912.
- Tiba, S. 1972. Studies on the acute and chronic toxicity of linear alkylbenzene sulfonate. J. Food Hyg. Soc. Jpn. 16:66-71 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Tiba, S., Shiobara, S., Imahori, A. and Kitagawa, T. 1976. Effects of linear alkylbenzene sulfonate on dam, fetus, and newborn rat. J. Food Hyg. Soc. Jpn. [Shokuhin Eiseigaku Zasshi], 17 (1):66-71 (in Japanese). Referenced in IPCS, Environmental Health Criteria 169. Linear Alkylbenzene Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland. Original article in Japanese.
- Tolls, J., Haller, M., DeGraaf, I., Thijssen, M.A.T.C. and Sijm, D.T.H.M. 1997. Bioconcentration of LAS: experimental determination and extrapolation to environmental mixtures. Environ. Sci. Technol. 31:3426-3431.
- Tolls, J. and Sijm, D.T.H.M. 2000. Estimating the properties of surface-active chemicals. In: Boethling, R.S. and Mackay, D. Handbook of Property Estimation Methods for Chemicals. Lewis Publishers.
- Toshima, Y., Moriya, T. and Yoshimura, K. 1992. Effects of polyethylene (20) sorbitan monooleate on the acute toxicity of linear alkylbenzenesulfonate (C¹²LAS) to fish. Ecotoxicology and Environmental Safety. 24:26-36.
- Traina, S.J., McAvoy, D.C. and Versteeg, D.J. 1996. Association of LAS with dissolved humic substances and its effect on bioavailability. Env. Sci. Technol. 30:1300-1309.
- Trehy, M.L., Gledhill, W.E., Mieure, J.P., Adamove, J.E., Nielsen, A.M., Perkins, H.O. and Eckhoff,W.S. 1996. Environmental monitoring for linear alkylbenzene sulfonates, dialkyltetralin sulfonates and their biodegradation intermediates. Environmental Toxicology and Chemistry. 15:233-240.

USEPA. 2000. EPI Suite v3.10

- Vailati, G., Calamari, D. and Marchetti, R. 1975. Effetti dell'alchilbenzene sofonato (LAS) sugli staid di sviluppo del *Salmo gairdneri* Rich. Istituto di Ricerca sulle Acque (CNR) Sezione di Idrobiologia Applicata (Milano).
- Valtorta, L., Radici, P., Calcinai, D, and Cavalli, L., 2000. Recent development of LAB/LAS. La Rivista Italiana Delle Sostanze Grasse LXXVII: 73-76.

- van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J., Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect concentrations and risk characterization of four surfactants: Linear alkylbenzene sulfonate, alcohol ethoxylates, alcohol ethoxylated sulfates, and soap. Environmental Toxicology and Chemistry. 18:2653-2663.
- Verge, C. and Moreno, A. 1996a. Toxicity of anionic surfactants to green microalgae "Scenedesmus subspicatus" and "Selenastrum capricornutum". Tenside Surf. Det. 33:166-168.
- Verge, C. and Moreno, A. 1996b. Toxicity of anionic surfactants to the bacterial population of a waste water treatment plant. Tenside Surf. Det. 33:323-327.
- Versteeg, D.J., Belanger, S.E., and Carr, G.J. 1999. Understanding single-species and model ecosystem sensitivity: Data-based comparison. Environ. Toxicol. Chem. 18:1329-1346.
- Versteeg, D.J., Stanton, D.T., Pence, M.A., and Cowan, C. 1997. Effects of surfactants on the rotifer, *Brachionus calyciflorus*, in a chronic toxicity test and the development of QSARs. Environ. Toxicol. Chem. 16:1051-1058.
- Vives-Rego, J., Lopez-Amoros, R., Guindulain, T., Garcia, M.T., Comas, J., and Sanchez-Leal, J. 2000. Microbial aspects of linear alkylbenzene sulfonate degradation in coastal water. Journal of Surfactants and Detergents. 3:303-308.
- Ward, T.E. and Larson, R.J. 1989. Biodegradation kinetics of LAS in sludge-amended agricultural soils. Ecotox. and Environ. Safety. 17:119-130.
- Watari, N., Torizawa, K., Kanai, M. and Suzuki, Y. 1977. Ultrastructural observations of the protective effect of glycyrrhizin for mouse liver injury caused by oral administration of detergent ingredient (LAS) J. Clin. Electron. Microscopy 10:121-139 (in Japanese) cited in IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland.
- Waters, J. and Feijtel, T.C.J. 1995. AIS/CESIO environmental surfactant monitoring programme: outcome of five national pilot studies on linear alkylbenzene sulphonate (LAS). Chemosphere. 30:1939-1956.
- Waters, J., Holt, M.S. and Matthijs, E. 1989. Fate of LAS in sludge amended soils. Tenside Surfactants Detergents. 26(2):129-135.
- Webb, S., Comber, S., Marshall, S. and Hoss, S. 2001. Toxicity of the anionic surfactant linear alkylbenzene sulfonate (LAS) to *Lubriculus variegatus* and *Caenorhabditis elegans* (abstract only). SETAC Congress, Wien.
- Wickbold, R. 1964. Zwischenprodukte beim Abbau eines geradkettigen Alkylbenzolsulfonates. Vortrage IV, Inern. Kongr. F. grenzflachenaktive Stoffe, Brussel. (not available for review)
- Windeat, A.J. 1987. Effects on the growth of *Sorghum bicolour*, *Helianthus annuus*, *Phaseolus aureus*. Unilever study report BL/B/3078 (R118). Unilever Research Port Sunlight Laboratory, Sunlight, UK.
- Yamane, A.N., Okada, M. and Sundo, R. 1984. The growth inhibition of planktonic algae due to surfactants used in washing agents. Water Res. 18:1101-1105.

- Yoneyama, M. Fujii, T., Ikawa, M., Shiba, H., Sakamoto, Y., Yano, N., Kobayashi, H., Ichikawa, H. and Hiraga, K. 1972. Studies on the toxicity of synthetic detergents. (II) Subacute toxicity of linear and branched alkyl benzene sulfonates in rats. Ann. Rep. Tokyo Metrap. Res. Lab. Public Health. 24:409-440. (In Japanese). cited in IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- Yoneyama, M., Masubuchi, M., Oishi, S., Takahashi, O., Ikawa, M., Yoshida, S., Oishi, H., Mikuriya, H., Yuzawa, K. and Hiraga, K. 1977. Subacute toxicity of linear alkylbenzene sulfonate. Ann. Rep. Tokyo Metrop. Res. Lab. Public Health. 28:73-84 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.

APPENDIX A

<u>Bibliography</u>

1.	Abdel-Shafy, H.I., Azzam, A.M. and El-Gamal, I.M. 1988. Studies on the degradation of synthetic detergents by sewage. Bull. Environ. Contam. Toxicol. 4:310-316.
2.	Abe, S. and Seno, M. 1987. Biodegradation of a sodium linear alkylbenzenesulfonates evaluated with a soil perfusion method. J. Am. Oil Chem. Soc. 64:148-152.
3.	Acher, A.J. and Yaron, B. 1977. Behavior of anionic surfactants in a soil-sewage effluent system. J. Environ. Qual. 6:418-420.
4.	Aidar, E., Sigaud-Kutner, T.C.S., Nishihara, L., Schinke, K.P., Braga, M.C.C., Farah, R.E. and Kutner, M.B.B. 1997. Marine phytoplankton assays: Effects of detergents. Marine Environmental Research. 43:55-68.
5.	Amano, K., Fukushima, T. and Nakasugi, O. 1991. Fate of linear alkylbenzenesulfonates in a lake estuary. Water Sci. Technol. 23:497-506.
6.	Amano, K., Fukushima, T. and Nakasugi, O. 1992. Diffusive exchange of linear alkylbenzenesulfonates (LAS) between overlying water and bottom sediment. Hydrobiologia. 235/236:491-499.
7.	Amano, K. and Fukushima, T. 1993. Partitioning of linear alkylbenzenesulfonates in natural water and sediment. J. Environ. Sci. Health. A28:683-696.
8.	Angelidaki, I., Haagensen, F. and Ahring, B.K. 2000. Anaerobic transformation of LAS in continuous stirred tank reactors treating sewage sludge. 5 th World CESIO Congress. V.2:1551-1557, Firenze, Italy.
9.	Angelidaki, I., Mogenen, A.S. and Ahring, B.K. 2000. Degradation of organic contaminants found in organic waste. Biodegradation. 11:377-383.
10.	Anderson, D.L., DeCarvalho, A., McAvoy, D., Nielsen, A.M., and Kravetz, L. 1997. Investigation of an on-site wastewater treatment system (OWTS) in sandy soil: Part 1: Subsurface soil and groundwater characterization. Poster presented at SETAC 97, San Francisco, CA, 16-20 November 1997.
11.	Anderson, D.L., DeCarvalho, A., McAvoy, D., Nielsen, A.M., and Kravetz, L. 1997. Investigation of an on-site wastewater treatment system (OWTS) in sandy soil: Part 2: Chemical transport characterization. Poster presented at SETAC 97, San Francisco, CA, 16-20 November 1997.
12.	Andree, H. 1997. Conclusions from the colloquium of the Hauptausschub Detergentien "The state of the debate on the ecological risk assessment of surfactants" on 24th April 1997 in Frankfurt. Tenside Surfactants Detergents. 34:224.
13.	Ankley, G.T. and Burkhard, L.P. 1992. Identification of surfactants as toxicants in a primary effluent. Environmental Toxicology and Chemistry. 11:1235-1248.
14.	Antal, M. 1972. Changes in blood glucose level induced by sodium dodecylbenzene sulfonate (SDBS) in rats. Z. Ernahrungswis. 12:144-151.

- Argese, E., Marcomini, A., Miana, P., Bettiol, C. and Perin, G. 1994. Submitochondrial particle response to linear alkylbenzene sulfonates, nonylphenol polyethoxylates and their biodegradation derivatives. Environmental Toxicology and Chemistry. 13:737-742.
- Arima, T., Takahashi, K., Kawana, T., Wakabayashi, A. and Kikuchi, M. 1981. Toxicity of detergents to aquatic organisms - II - toxicity of anionic detergents to eggs, larvae, and young of carp. Suisan Zoshoku. 29:30-37. (Translation).
- Arthur D. Little, Inc. 1991. Environmental and human safety of major surfactants. Volume I. Anionic surfactants. Part 1. Linear alkylbenzene sulfonates. Final report to the Soap and Detergent Association. February.
- 18. Arthur, J.W. 1970. Chronic effects of linear alkylate sulfonate detergent on *Gammarus pseudolimnaeus*, *Campeloma decisum* and *Physa integra*. *Water Res.* 4:251-257.
- Barera, Y. and Adams, W.J. 1983. Resolving some practical questions about Daphnia acute toxicity test. Pages 509-518 In: Aquatic toxicology and hazard assessment: sixth symposium. ASTM STP 802.
- Belanger, S.E. 1994. Review of experimental microcosm, mesocosm, and field tests used to evaluate the potential hazard of surfactants to aquatic life and the relation to single species data. Pages 287-314 In: Hill, I.R., Heimbach, F., Leeuwangh, P., and Matthiessen, P. (eds). Freshwater field tests for hazard assessment of chemicals. Lewis Publishers, Boca Raton, FL.
- Belanger, S.E., Bowling, J.W., Lee, D.M., LeBlanc, E.M., Kerr, K.M., McAvoy, D.C., Christman, S.C. and Davidson, D.H. 2002. Integration of aquatic fate and ecological responses to linear alkyl benzene sulfonate (LAS) in model stream ecosystems. Ecotoxicology and Environmental Safety. In Press.
- 22. Berna, J.L., de Ferrer, J., Moreno, A., Prats, D. and Ruiz Bevia, F. 1989. The fate of LAS in the environment. Tenside Surfactants Detergents. 26(2):101-107.
- Berna, J.L., Moreno, A., Banerji, A., Fritsch, T.R. and Vora, B.V. 1994. Growth and developments in linear alkylbenzene technologies: thirty years of innovation and more to come. Pages 127-134 In: Cahn, A. (ed.). Proceedings of the 3rd world conference on detergents: Global perspectives. AOCS Press, Champaign, Illinois.
- 24. Berna, J.L., Moreno, A. and de Ferrer, J. 1991. The behaviour of LAS in the environment. J. Chem. Tech. Biotechnol. 50:387-398.
- 25. Berna, J.L., Moreno, A. and de Ferrer, J. 1993. An assessment of the ultimate biodegradation of LAS. Tenside Surf. Det. 30:217-222.
- Bester, K., Theobald, N., and Schroeder, H.Fr. 2001. Nonylphenols, nonylphenol-ethoxylates, linear alkylbenzenesulfonates (LAS) and bis (4-schlorophenyl)–sulfone in the German Bight of the North Sea. Chemosphere. 45:817-826.
- 27. Biolab SGS. 1989a. Primary skin irritation. Report No. T00428/4.
- 28. Biolab SGS. 1989b. Primary skin irritation. Report No. T343.
- 29. Biolab SGS. 1989c. Primary skin irritation. Report No. T00430/2.
- 30. Biolab SGS. 1983d. Primary skin irritation. Report No. T116/2.

August 11, 2005

- 31. Biolab SGS. 1984. Acute eye irritation. Report No. T3R/27.
- 32. Biolab SGS. 1989. Acute eye irritation. Report No. 00428/13.
- Birch, R.R., Gledhill, W.E., Larson, R.J. and Nielsen, A.M. 1992. Role of anaerobic biodegradability in the environmental acceptability of detergent materials. Pages 26-33 IN *Surfactants: a world market*. CESIO International Surfactants Congress and Exhibition, 1992. Brussels.
- Bishop, W.E. and Maki, A.W. 1980. A critical comparison of two bioconcentration test methods. Pages 61-77 In: Aquatic toxicology. ASTM STP 707.
- 35. Bishop, W.E. and Perry, R.L. 1981. Development and evaluation of a flow-through growth inhibition test with duckweed (*Lemna minor*). Pages 421-435 IN *Aquatic toxicology and hazard assessment: fourth conference*. ASTM STP 737.
- 36. BKH. 1993. The use of existing toxicity data for estimation of the Maximum Tolerable Environmental Concentration of Linear Alkyl Benzene Sulfonate, Part I: Main report; Part II: Data base. Study carried out for ECOSOL, BKH Consulting Engineers, Delft, NL.
- 37. Blok, J. and Balk, F. 1993. Attempts to bridge the gap between laboratory toxicity tests and ecosystems: a case study with LAS. The Science of the Total Environment. Supplement:1527-1538.
- 38. Bock, K.J. and Wickbold, R. 1966. Auswirkungen der Umstellung auf leicht abbaubare Waschrohstoffe in einer großtechnischen Kläranlage und im Vorfluter. Vom Wasser 33:242-253.
- 39. Bollman, M.A., Baune, W.K., Smith, S., DeWhitt, K., and Kapustka, J. 1989. Report on algal toxicity tests on selected Office of Toxic Substances (OTS) chemicals. EPA/600/3-90/041.
- 40. Bornmann, G., Loeser, A. and Stanisic, M. 1961. The toxicity of alkylarene sulfonates. Fette, Seifen, Anstrichmittel. 63:938-940.
- 41. Borstlap, C. 1967. Intermediate biodegradation products of anionic detergents: their toxicity and foaming properties. Pages 891-901 In: Proceedings: Chemistry, physics, and application of surface active substances, Brussels, September 1964. Volume 3.
- 42. Bragadin, M., Perin, G., Raccanelli, S. and Manente, S. 1996. The accumulation in lysosomes of the anionic detergent linear alkylbenzene sulfonate. Environmental Toxicology and Chemistry. 15:1749-1751.
- 43. Breen, A., Jimenez, L., Sayler, G.S. and Federle, T.W. Plasmid incidence and linear alkylbenzene sulfonate biodegradation in wastewater and pristine pond ecosystems. Journal of Industrial Microbiology. 9:37-44.
- Bressan, M., Brunetti, R., Casellato, S., Fava, G.C., Giro, P., Marin, M., Negrisolo, P., Tallandini, L., Thomann, S., Tosoni, L. and Turchetto, M. 1989. Effects of linear alkylbenzene sulfonate (LAS) on benthic organisms. Tenside Surfactants Detergents. 26:148-158.
- Bressan, M., Marin, M.G., and Brunetti, R. 1991. Effects of linear alkylbenzene sulfonate (LAS) on skeletal development of sea urchin embryos (Paracentrotus lividus LMK). Water Res. 25:613-616.

- 46. Brown, V.M., Abram, F.S.H. and Collins, L.J. 1978. The acute lethal toxicity to rainbow trout of an LAS surfactant and of its residues and degradation products. Tenside Detergents. 15:57-59.
- 47. Brunner, P.H., Capri, S., Marcomini, A., and Giger, W. 1988. Occurrence and behaviour of linear alkylbenzenesulphonates, nonylphenol, nonylphenol mono- and nonylphenol diethoxylates in sewage and sewage sludge treatment. Wat. Res. 22:1465-1472.
- 48. Buehler, E.V., Newmann, E.A. and King, W.R. 1971. Two-year feeding and reproduction study in rats with linear alkylbenzene sulfonate (LAS). Toxicology and Applied Pharmacology. 18:83-91.
- Calabrese, A. and Davis H.C. 1967. Effects of Asoft@ detergents on embryos and larvae of the American oyster (Crassostrea virginica). Proceedings of the National Shellfisheries Association. 57:11-16.
- 50. Cano, M.L., Dyer, S.D. and DeCarvalhos, A.J. 1996. Effect of sediment organic carbon on the toxicity of a surfactant to Hyalella azteca. Environmental Toxicology and Chemistry. 15:1411-1417.
- 51. Canton, J.H. and Slooff, W. 1982. Substitutes for phosphate containing washing products: their toxicity and biodegradability in the aquatic environment. Chemosphere. 11:891-907.
- 52. Carlsen, L., Metzon, M.B. and Kjelsmark, J. 2002. Linear alkylbenzene sulfonates (LAS) in the terrestrial environment. The Science of the Total Environment. 290:225-230.
- Casellato, S., Aiello, R., Negrisolo, P.A. and Seno, M. 1992. Long-term experiment on *Branchiura* sowerbyi Beddard (Oligochaeta, Tubificidae) using sediment treated with LAS (Linear Alkylbenzene Sulphonate). Hydrobiologia. 232:169-173.
- 54. Cavalli, L., Cassani, G. and Lazzarin, M. 1996. Biodegradation of linear alkylbenzene sulphonate (LAS) and alcohol ethoxylate (AE). Tenside Surf. Det. 33:158-165.
- 55. Cavalli, L., Cassani, G., Lazzarin, M., Maraschin, C., Nucci, G., Berna, J.L., Bravo, J., de Ferrer, J. and Moreno, A. 1996. Iso-branching of linear alkylbenzene sulphonate (LAS). Biodegradation study of two model compounds. Toxicological and Environmental Chemistry. 54:167-186.
- 56. Cavalli, L., Cassani, G., Lazzarin, M., Maraschin, C., Nucci, G. and Valtorta, L. 1996. Iso-branching of linear alkylbenzene sulphonate (LAS). Tenside Surf. Det. 33:393-398.
- Cavalli, L., Divo, C., Giuffrida, G., Pellizzon, T., Radici, P., Valtorta, L. and Zatta, A. 1993. Producing linear alkyl benzene (LAB) from linear olefins using an AlCl3 catalyst. Specialty Chemicals. 13(4):228-231.
- 58. Cavalli, L. Gellera, A. and Landone, A. 1993. LAS removal and biodegradation in a wastewater treatment plant. *Environmental Toxicology and Chemistry*. 12:1777-1788.
- Cavalli, L., Gellera, A., Lazzarin, A., Nucci, G.C., Romano, P., Ranzani, M. and Lorenzi, E. 1991. Linear alkylbenzene sulphonate removal and biodegradation in a metropolitan plant for water treatment. Riv. Ital. Sostanze Grasse. 68:75-81.
- 60. CESIO. 1994. Classification and labelling of surfactants. European Committee of Organic Surfactants and Their Intermediates. Brussels. 407/JGA/FG/40907-48.
- 61. Chattopadhyay, D.N. and Konar, S.K. 1985. Chronic effects of linear alkyl benzene sulfonate on aquatic ecosystems. Environment & Ecology. 3:428-433.

- 62. CHIMICA OGGI. 1998. LAS A modern classic surfactant. Article by Udo Schoenkaes in CHIMICA OGGI/Chemistry Today, Sept. 1998.
- Chung, K.H., Ro, K.S., and Hong, S.U. 1995. Synthetic detergent in an urban stream of Korea. Pages 429-435 IN Surface water quality and ecology, Volume IV. Proceedings of the Water Environment Federation 68th Annual Conference & Exposition. Miami Beach, FL, October 21-25, 1995.
- 64. Chung, K.H., Ro, K.S. and Hong, S.U. 1996. Linear alkylbenzenesulfonates (LAS) of an urban stream in Korea. Environmental Monitoring and Assessment. 40:261-269.
- 65. Cohen, L., Moreno, A. and Berna, J.L. 1996. Analysis and identification of minor products in linear alkylbenzene sulphonation. Tenside Surf. Det. 33:441-446.
- 66. Cohen, L., Vergara, R., Moreno, A. and Berna, J.L. 1995. Influence of 2-phenyl alkane and telralin content on solubility and viscosity of linear alkylbenzene sulfonate. JAOCS 72:115-122.
- Comotto, R.M., Kimerle, R.A. and Swisher, R.D. 1979. Bioconcentration and metabolism of linear alkylbenzene sulfonate by daphnids and fathead minnows. Pages 232-250 In: Aquatic toxicology. ASTM STP 667.
- 68. Conti, E. 1987. Acute toxicity of three detergents and two insecticides in the lugworm, Arenicola marina (L.): a histological and a scanning electron microscopic study. Aquatic Toxicology. 10:325-334.
- 69. Cook, A.M. 1997. Linear alkylbenzenesulfonate (LAS) bioavailable to anaerobic bacteria as a source of sulfur. In preparation.
- 70. Cook, T.M. and Goldman, C.K. 1974. Degradation of anionic detergents in Chesapeake Bay. Chesapeake Science. 15:52-55.
- Cordon, T.C., Maurer, E.W. and Stirton, A.J. 1972. The biodegradation of some sulfates alkanolamides. J. Am. Oil Chem. Soc. 49:174-177.
- 72. Cowan, C.E., Larson, R.J., Feijtel, T.C.J. and Rapaport, R.A. 1993. An improved model for predicting the fate of consumer product chemicals in wastewater treatment plants. Wat. Res. 27:561-573.
- Cresswell, D.G., Baldock, G.A., Chasseaud, L.F. and Hawkins, D.R. 1978. Toxicology studies of linear alkylbenzene sulphonate (LAS) in rhesus monkeys. II. The disposition of [¹⁴C] LAS after oral or subcutaneous administration. Toxicology. 11:5-17.
- Crisinel, A., Delaunay, L., Rossel, D., Tarradellas, J., Meyer, H., Saiah, H., Vogel, P., Delisle, C. and Blaise, C. 1994. Cyst-based ecotoxicological tests using anostracans: comparison of two species of Streptocephalus. Environmental Toxicology and Water Quality. 9:317-326.
- 75. Cross, J. and Dekker, M. (ed.). 1977. Anionic surfactants: Chemical analysis. Vol.8. Pp. 111-115.
- 76. Daly, I.W., Schroeder, R.E. and Killeen, J.C. 1980. A teratology study of topically applied linear alkylbenzene sulphonate in rats. Fd. Cosmet. Toxicol. 18:55-58.
- 77. de Almeida, J.L.G., Dufaux, M., Taarit, Y.B. and Naccache, C. 1994. Linear alkylbenzene. Journal of the American Oil Chemists Society. 71:675-694.

- 78. Debane, C. 1978. National Hygiene Laboratory; in: "Report on Studies on Synthetic Detergents", October 1978, Japan's Science and Technology Agency [in Japanese].
- 79. de Ferrer, J., Moreno, A., Vaquero, M.T. and Comellas, J. 1997. Monitoring of LAS in direct discharge situations. Tenside Surf. Det. 34:278-283.
- de Henau, H. and Mathijs, E. 1986. Linear alkylbenzene sulfonates (LAS) in sewage sludges, soils and sediments: analytical determination and environmental safety considerations. Intern. J. Environ. Anal. Chem. 26:279-293.
- 81. De Henau, H., E. Matthijs, and E. Namkung. 1989. Trace analysis of linear alkylbenzene sulfonate (LAS) by HPLC - detailed results from two municipal sewage treatment plants. Pages 5-18 IN Quaghebeur, D., I. Temmerman, and G. Angeletti. Organic contaminants in waste water, sludge and sediment - occurrence, fate and disposal. Elsevier Applied Science.
- DelValls, T.A., Forja, J.M. and Gomez-Parra, A. 2002. Seasonality of contamination, toxicity, and quality values in sediments from littoral ecosystems in the Gulf of Cadiz (SW Spain). Chemosphere. 46:1033-1043.
- 83. de Wolf, W. and Feijtel, T. 1997. Terrestrial risk assessment for linear alkyl benzene sulfonate (LAS) in sludge-amended soils: a literature review. Presented at the specialty conference Management and Fate of Toxic Organics in Sludge Applied to Land. April 30 - May 2, 1997, Copenhagen, Denmark.
- 84. DelValls, T.A., Lubian, L.M., Foria, J.M., and Gomez-Parra, A. 1997. Comparative ecotoxicity of interstitial waters in littoral ecosystems using Microtox and the rotifer Brachionus plicatilis. Environmental Toxicology and Chemistry 16:2323-2332.
- 85. Denger, K. and Cook, A.M. 1999. Linear alkylbenzene sulphonate (LAS) bioavailable to anaerobic bacteria as a source of sulphur. Journal of Applied Microbiology. 86:165-168.
- 86. Devi, Y. and Devi, S. 1986. Effect of synthetic detergents on germination of fern spores. Bull. Environ. Contam. Toxicol. 37:837-843.
- DiCorcia, A. and Samperii, R. 1994. Monitoring aromatic surfactants and their biodegradation intermediates in raw and treated sewages by solid-phase extraction and liquid chromatography. Environ. Sci. Technol. 28:850-858.
- DiCorcia, A., Samperi, R., Bellioni, A., Marcomini, A., Zaanette, M., Lemr, K., and Cavalli, L. 1994. LAS pilot study at the "Roma-Nord" sewage treatment plant and in the Tiber River. La Rivista Italiana Delle Sostanze Grasse 71:467-475.
- DiToro, D.M., Dodge, L.J. and Hand, V.C. 1990. A model for anionic surfactant sorption. Environ. Sci. Technol. 24:1013-1020.
- 90. Divo, C. and Cardini, G. 1980. Primary and total biodegradation of linear alkylbenzene sulphonates. Tenside Detergents. 17:30-36.
- 91. Doi, J., Marks, K., McAvoy, D., Decarvalho, A., Nielsen, A. and Kravetz, L. 1997. Investigation of an on-site wastewater treatment system (OWTS) in sandy soil: Part 4: Adsorption and

biodegradation of LAS. Poster presented at SETAC 97, San Francisco, CA, 16-20 November 1997.

- 92. Dolan, J.M. III, Gregg, B.G., Cairns, Jr., Dickson, K.L. and Hendricks, A.C. 1974. The acute toxicity of three new surfactant mixtures to mayfly larvae. Arch. Hydrobiol. 74:123-132.
- 93. Dolan, J.M. III and Hendricks, A.C. 1976. The lethality of an intact and degraded LAS mixture to bluegill sunfish and a snail. Journal of the Water Pollution Control Federation. 48:2570-2577.
- Douglas, M.T., Chanter, D.O., Pell, I.B. and Burney, G.M. 1986. A proposal for the reduction of animal numbers required for the acute toxicity to fish test (LC₅₀ determination). Aquatic Toxicology. 8:243-249.
- 95. Draxl, R., Neugebaur-Buchler, K.E., Joachim Zieris, F. and Huber, W. 1994. Response of aquatic outdoor microcosms of the Asplit-pond@ type to chemical contamination. Pages 323-330 In: Hill, I.R., Heimbach, F., Leeuwangh, P., and Mattiessen, P. (eds.). Freshwater field tests for hazard assessment of chemicals. Lewis Publishers, Boca Raton, FL.
- DuPont Chemical Co. 1992. Initial submission: approximate lethal concentrations by inhalation of sodium lauryl sulfate & sodium dodecylbenzene sulfonate. TSCA 8ECP Doc ID 88-920008936. NTIS/OTS0546357.
- 97. ECETOC. 1993. Environmental hazard assessment of substances. Technical Report No. 51. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels.
- 98. Eganhouse, R.P., Blumfield, D.L. and Kaplan, I.R. 1983. Long-chain alkylbenzenes as molecular tracers of domestic wastes in the marine environment. Environ. Sci. Technol. 17:523-530.
- Eggert, C.R., Kaley, R.G. and Gledhill, W.E. 1979. Application of a laboratory freshwater lake model in the study of linear alkylbenzene sulfonate (LAS) biodegradation. Pages 451-461 In: Bourquin, A.W. and P.H. Pritchard (eds). Proceedings of the workshop: microbial degradation of pollutants in marine environments. EPA/600/9-79/012.
- Elsgaard, L., Petersen, S.O. and Debosz, K. 2001. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil.
 Short-term effects on soil microbiology. Environmental Toxicology and Chemistry. 20:1656-1663.
- Elsgaard, L., Petersen, S.O., and Debosz, K. 2001. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 2. Effects on soil microbiology as influenced by sewage sludge and incubation time. Environmental Toxicology and Chemistry. 20:1664-1672.
- Endo, T., Furuido, Y., Namie, K., Yamamoto, N., Hasunuma, H. and Ueda, K. 1980. Studies of the chronic toxicity and teratogenicity of synthetic surfactants. Ann. Rep. Tokyo Metrop. Res. Inst. Environ. Prot. 236-246 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 103. EnviroControl. 1981. Mono(C₁₀₋₁₆) Alkylbenzenesulfonic acids and their sodium salts. Hazard information review prepared under EPA contract No. 68-01-5789 for the TSCA Interagency Testing Committee (Working Draft) July 15, 1981.
- 104. ERASM. 2000. Long-term toxicity of LAS on Gammarus pulex. Internal Report AISE/CESIO, Brussels.

- Ernst, R., Arditti, J. and Healey, P.L. 1971. Biological effects of surfactants. I. Influence on the growth of orchid seedlings. New Phytol. 70:457-475.
- European Commission. 2000a. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition.
- European Commission. 2000b. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Henkel KGaA, unpublished results (Registry No. 5929).
- European Commission. 2000c. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Huels AG, 1/90, N. Scholz, unpublished.
- European Commission. 2000d. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Huels AG, 2/87, N. Scholz, unpublished.
- 110. European Commission. 2000e. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Maki, A.W. 1981. A Laboratory model ecosystem approach to environmental fate and effects studies. Unpublished Internal Report, Environmental Safety Department Procter and Gamble Company, Cincinnati, Ohio.
- European Commission. 2000f. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, AT/FU/80/90.
- European Commission. 2000g. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, AL/10.
- European Commission. 2000h. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, AL/12.
- European Commission. 2000i. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, AT/17.
- European Commission. 2000j. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, CT/R118/03.
- European Commission. 2000k. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, CT/R153/01, CT/R153/02.
- European Commission. 2000l. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, CT/R89/01, CT/R89/02.
- European Commission. 2000m. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, ETS 311.
- European Commission. 2000n. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, P2636.01.
- European Commission. 2000o. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing The Procter & Gamble Company, unpublished data, Reports No. RCC-2315547.
- European Commission. 2000p. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 22581, 28361.

- 122. European Commission. 2000q. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 22852, 23613, 23612.
- European Commission. 2000r. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 23618, 22853, 23611, 23276.
- European Commission. 2000s. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 27896, 27897, 27915.
- European Commission. 2000t. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 29101.
- European Commission. 2000u. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 31340.
- 127. European Commission. 2000v. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Procter & Gamble, 1991, 34845.
- European Commission. 2000w. Benzenesulfonic acid, C₁₀₋₁₃-alkyl derivs., sodium salts. Year 2000 CD-ROM edition, citing Shell Research Ltd, SBGR.81.083, RR Stephenson.
- 129. European Union (EU). 1997. EU Risk Assessment Report for Linear Alkyl Benzene. Revision May 1997.
- Fairchild, J.F., Dwyer, F.J., LaPoint, T.W., Burch, S.A. and Ingersoll, C.G. 1993. Evaluation of a laboratory-generated NOEC for linear alkylbenzene sulfonate in outdoor experimental streams. Environmental Toxicology and Chemistry. 12:1763-1775.
- 131. Federle, T.W. and Itrich, N.R. 1997. Comprehensive approach for assessing the kinetics of primary and ultimate biodegradation of chemicals in activated sludge: Application to linear alkylbenzene sulfonate. Environ. Sci. Technol. 31:1178-1184.
- 132. Federle, T.W. and Pastwa, G.M. 1988. Biodegradation of surfactants in saturated subsurface sediments: a field study. Ground Water. 26:761-770.
- 133. Federle, T.W. and Schwab, B.S. 1989. Mineralization of surfactants by microbiota of aquatic plants. Applied and Environmental Microbiology. 55:2092-2094.
- 134. Federle, T.W. and Schwab, B.S. 1992. Mineralization of surfactants in anaerobic sediments of a laundromat wastewater pond. Wat. Res. 26:123-127.
- 135. Federle, T.W. and Ventullo, R.M. 1990. Mineralization of surfactants by microbiota of submerged plant detritus. Applied and Environmental Microbiology. 56:333-339.
- 136. Feijtel, T.C.J., Matthijs, E., Rottiers, A., Rijs, G.B.J., Kiewiet, A. and de Nijs, A. 1999. AIS/CESIO environmental surfactant monitoring programme. Part 1: LAS monitoring study in "de Meer" STP and receiving river "Leidsche Rijn" Chemosphere 30:1053-1066.
- Feijtel, T.C.J., Struijs, J. and Matthijs, E. 1999. Exposure modeling of detergent surfactants Prediction of 90th-percentile concentrations in the Netherlands. Environmental Toxicology and Chemistry. 18:2645-2652.

- 138. Feijtel, T.C.J. and van de Plassche, E.J. 1995. Environmental risk characterization of 4 major surfactants used in the Netherlands. Dutch Soap Association, Zeist, Netherlands. Report No. 679101 025.
- Feijtel, T., Vits, H., Murray-Smith, R., Van Wijk, R., Koch, V., Schroder, R., Birch, R. and Berge, W.T. 1996. Fate of LAS in activated sludge wastewater treatment plants: a model verification study. Chemosphere. 32:1413-1426.
- 140. Fendinger, N.J., Versteeg, D.J., Weeg, E., Dyer, S. and Rapaport, R.A. 1994. Environmental behavior and fate of anionic surfactants. Pages 527-557 In: Baker, L.A. (ed). Environmental chemistry of lakes and reservoirs. American Chemical Society Advances in Chemistry Series No, 237.
- 141. Field, J.A., Barber II, L.B., Thurman, E.M., Moore, B.L., Lawrence, D.L. and Peake, D.A. 1992. Fate of alkylbenzenesulfonates and dialkyltetralinsulfonates in sewage-contaminated groundwater. Environ. Sci. Technol. 26:1140-1148.
- 142. Field, J.A., Miller, D.J., Field, T.M., Hawthorne, S.B. and Giger, W. 1992. Quantitative determination of sulfonated aliphatic and aromatic surfactants in sewage sludge by ion-pair/supercritical fluid extraction and derivation gas chromatography/mass spectrometry. Anal. Chem. 64:3161-3167.
- 143. Field, J.A., Field, T.M., Polger, T. and Giger, W. 1994. Determination of secondary alkane sulfonates in sewage wastewaters by solid-phase extraction and injection-port derivatization gas chromatography/mass spectrometry. Environ. Sci. Technol. 28:497-503.
- 144. Figge, K. and Schoberl, P. 1989. LAS and the application of sewage sludge in agriculture. Tenside Surfactants Detergents. 26:122-128.
- 145. Fischer, W.K. and Gerike, P. 1975. Biodegradability determinations via unspecific analyses (chemical oxygen demand, dissolved organic carbon) in coupled units of the OECD confirmatory test. II. Results. Water Research. 9:1137-1141.
- 146. Fox, K. 2001. Environmental risk assessment under HERA: challenges and solutions. Journ. Comp. Esp. Deterg. 31:213-223.
- 147. Fox, K.K., Chapman, L., Solbe, J. and Brennand, V. 1997. Effect of environmentally relevant concentrations of surfactants on the desorption or biodegradation of model contaminants in soil. Tenside Surfactants Detergents. 34: 436-441.
- 148. Fox, K., Holt, M., Daniel, M., Buckland, H. and Guymer, I. 2000. Removal of linear alkylbenzene sulfonate from a small Yorkshire stream. Contribution to GREAT-ER project #7. Sci. Total Environ. 251:265-275.
- 149. Froebe, C.L., Simion, F.A., Rhein, L.D., Cagan, R.H. and Kligman, A. 1990. Stratum corneum lipid removal by surfactants: Relation to *in vivo* irritation. Dermatologia. 181:277-283.
- 150. Fujii, T., Sakamoto, Y., Abe, Y., Mikurita, H., Yuzawa, K. and Hiraga, K. 1977. Pathological examination of rats fed with linear alkylbenzene sulfonate for their lifespan. Ann. Rep. Tokyo Metrop. Res. Lab. Public Health. 28:85-108 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 151. Gafa, S. 1974. Studies on relationship between acute toxicity to fish and surface activity of anionic surfactants. Riv. Ital. Sostanze Grasse. 51:183-192.

- 152. Games, L.M. 1982. Field validation of exposure analysis modelling systems (EXAMS) in a flowing stream. Ch. 18. In: Dickson, K.L., Maki, A.W. and Cairns, J. (ed.). 1981. Modelling and Fate of Chemicals in the Aquatic Environment. 4th Meeting. Sci. Ann Arbor Michigan Pp. 325-346.
- Games, L.M. 1983. Practical applications and comparisons of environmental exposure assessment models. Pages 282-299 In: Aquatic toxicology and hazard assessment: sixth symposium. ASTM STP 802.
- 154. Gandolfi, C., Facchi, A., Whelan, M.J., Cassarri, G., Tartari, G. and Marcomini, A. 2000. Validation of the GREAT-ER model in the River Lambro catchment. 5th World CESIO Congress. V.2:1370-1379.
- 155. Garcia-Lara, J., Penon, F.J., Gonzalez, J. and Vives-Rego, J. 1991. Assessment of microbial activity by the INT-dehydrogenase assay during the degradation of linear alkylbenzene sulphonate in sea water and in the OECD screening method. Biomedial Letters. 46:151-157.
- 156. Gard-Terech, A. and Palla, J.C. 1986. Comparative kinetics study of the evolution of freshwater aquatic toxicity and biodegradability of linear and branched alkylbenzene sulfonates. Ecotoxicology and Environmental Safety. 12:127-140.
- Gejlsbjerg, B., Klinge, C., Samsoe-Petersen, L., and Madsen, T. 2001. Toxicity of linear alkylbenzene sulfonates and nonylphenol in sludge-amended soil. Environmental Toxicology and Chemistry. 20:2709-2716.
- 158. Gerike, P., Holtmann, W. and Jasiak, W. 1984. A test for detecting recalcitrant metabolites. Chemosphere. 13:121-141.
- 159. Gerike, P., Winkler, K., Schneider, W. and Jakob, W. 1989. Residual LAS in German rivers. Tenside Surfactants Detergents. 26:136-140.
- Geyer, H., Viswanathan, R., Freitag, D. and Korte, F. 1981. Relationship between water solubility of organic chemicals and their bioaccumulation by the alga Chlorella. Chemosphere. 10:1307-1313.
- Giger, W., Alder, A.C., Brunner, P.H., Marcomini, A., and Siegrist, H. 1989. Behaviour of LAS in sewage and sludge treatment and in sludge-treated soil. Tenside Surfactants Detergents. 26:95-100.
- Gilbert, P.A. and Pettigrew, R. 1984. Surfactants and the environment. International Journal of Cosmetic Science. 6:149-158.
- Gledhill, W.E. 1975. Screening test for assessment of ultimate biodegradability: Linear alkylbenzene sulfonates. Applied Microbiology. 30:922-929.
- 164. Gledhill, W.E., Saeger, V.W., and Trehy, M.L. 1991. An aquatic environmental safety assessment of linear alkylbenzene. Environmental Toxicology and Chemistry. 10:169-178.
- 165. Gloxhuber, C. and Kunstter, K. (eds.). 1992. Anionic Surfactants. Biochemistry, Toxicology, Dermatology, 2nd Ed. Marcel Dekker, New York.
- 166. Gonzalez-Mazo, E., Honing, M., Barcelo, D. and Gomez-Parra, A. 1997. Monitoring long-chain intermediate products from the degradation of linear alkylbenzene sulfonates in the marine environment by solid-phase extraction followed by liquid chromatograph/ionspray mass spectrometry. Environ. Sci. Technol. 31:504-510.
- 167. Gonzalez-Mazo, E., Quiroga, J.M., Sales, D. and Gomez-Parra, A. 1997. Levels of linear alkylbenzenesulfonate (LAS) in waters and sediments of the coastal ecosystems of the Gulf of Cadiz. Toxicological and Environmental Chemistry. 59:77-87.
- 168. Granmo, A. 1972. Development and growth of eggs and larvae of Mytilus edulis exposed to a linear dodecylbenzenesulphonate, LAS. Marine Biology. 15:356-358.
- Greim, H., Ahlers, J., Bias, R., Broecker, B., Hollander, H., Gelbke, H.-P., Klimisch, H.-J., Mangelsdorf, I., Paetz, A., Schon, N., Stropp, G., Vogel, R., Weber, C., Ziegler-Skylakakis, K. and Bayer, E. 1994. Toxicity and ecotoxicity of sulfonic acids: structure-activity relationship. Chemosphere. 28:2203-2236.
- 170. Greiner, P. and Six, E. 1997. Evaluation of the results of the LAS-monitoring in Germany. Tenside Surfactants Detergents. 34:250-255.
- 171. Grieve, A.M. and Pitman, M.G. 1978. Salinity damage to Norfolk Island pines caused by surfactants. III. Evidence for stomatal penetration as the pathway of salt entry to leaves. Aust. J. Plant. Physiol. 5:397-413.
- 172. Guhl, W. and Gode, P. 1989. Correlations between lethal and chronic/biocenotic effect concentrations of surfactants. Tenside Surf. Det. 26:282-287.
- 173. Gupta, B.N., Mathur, A.K., Agarwal, C., and Singh, A. 1986. Effect of synthetic detergent on certain enzymes in liver and kidney in male rats. Arogya-J. Health Sci. 12:50-54.
- 174. Haigh, S.D. 1996. A review of the interaction of surfactants with organic contaminants in soil. The Science of the Total Environment. 185:161-170.
- 175. Halvorson, H. and Ishaque, M. 1969. Microbiology of domestic wastes. III. Metabolism of LAS-type detergents by bacteria from a sewage lagoon. Can. J. Microbiol. 15:571-576.
- Hamwijk, C. 2002. Literature study: Exposure and possible indirect effects of aerosol borne surfactants on coastal vegetation. TNO Chemistry report, Study number 02-4077/01. Prepared for CEFIC ERASM.
- 177. Hand, V.C., Rapaport, R.A. and Pittinger, C.A.. 1990. First validation of a model for the adsorption of linear alkylbenzenesulfonate (LAS) to sediment and comparison to chronic effects data. Chemosphere. 21:741-750.
- 178. Hand, V.C. and Williams, G.K. 1987. Structure-activity relationships for sorption of linear alkylbenzenesulfonates. Environ. Sci. Technol. 21:370-373.
- 179. Hansch, C. and Leo, A. 1979. Substitution Constants for Correlation Analysis in Chemistry and Biology. John Wiley & Sons, New York, NY.
- Hansen, B., Fotel, F.L., Jensen, N.J. and Wittrup, L. 1997. Physiological effects of the detergent linear alkylbenzene sulphonate on blue mussel larvae (Mytilus edulis) in laboratory and mesocosm experiments. Marine Biology. 128:627-637.
- 181. Harrold, S.P. 1959. Denaturation of epidermal keratin by surface active agents. Journal of Investigative Dermatology. 5:581-588.

- 182. Hatzi, E. 2001. Anaerobic degradation of linear alkylbenzene sulfonates (LAS). Preliminary report. Department of Environment & Resources, DTU, Denmark.
- 183. Havermann, H. and Menke, K.H. 1959. Biological study of the water-soluble surface-active substances. Fette. Seifen. Anstrichmittel. 61:429-434. (in German); cited in IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland. Original article in Japanese.
- 184. Healey, P.L., Ernst, R. and Arditti, J. 1971. Biological effects of surfactants. II. Influence on the ultrastructure of orchid seedlings. New Phytol. 70:477-482.
- Heinze, J.E. and Britton, L.N. 1994. Anaerobic biodegradation: environmental relevance. Pages 235-239 In: Cahn, A. (ed). Proceedings of the 3rd world conference on detergents: Global perspectives. AOCS Press, Champaign, Illinois.
- Hendricks, M.H. 1970. Measurement of enzyme laundry detergent product dust levels and characteristics in consumer use. J. Am. Oil Chem. Soc. 47:207-211.
- Hennes, E.C. and Rapaport, R.A. 1989. Calculation and analytical verification of LAS concentrations in surface waters, sediment and soil. Tenside Surfactants Detergents. 26:141-147.
- HERA. 2002. HERA-LAS Human and Environmental Risk Assessment: Linear Alkylbenzene Sulphonates, LAS. CAS No. 68411-30-3, Draft #6, May 2002.
- 189. Hermann, R., Gerke, J. and Ziechmann, W. 1997. Photodegradation of the surfactants Nadodecylbenzenesulfonate and dodecylpyridinium-chloride as affected by humic substances. Water, Air, and Soil Pollution. 98:45-55.
- Heywood, R., James, R.W. and Sortwell, R.J. 1978. Toxicology studies of linear alkylbenzene sulphonate (LAS) in rhesus monkeys. I. Simultaneous oral and subcutaneous administration for 28 days. Toxicology. 11:245-250.
- Hidaka, H., Kubata, H., Gratzel, M., Serpone, N. and Pelizzetti, E. 1985. Photodegradation of surfactants. I. Degradation of sodium dodecyl sulfonate in aqueous semiconductor dispersions. Nouveau J. Chemie. 9:67-69.
- 192. Hidaka, H. and Tatsukawa, R. 1989. Avoidance by olfaction in a fish, medaka (*Oryzias latipes*), to aquatic contaminants. Environmental Pollution. 56:299-309.
- 193. Hitchcock, W.S. and Martin, D.F. 1977. Effects and fate of a surfactant in cultures of the red tide organisms, *Gymnodinium breve*. Bull. Environ. Contam. Toxicol. 18:291-296.
- 194. Hodgman, C.D. 1961. Handbook of Chemistry and Physics, 43rd edition. The Chemical Rubber Publishing Company, Cleveland, Ohio.
- 195. Hofer, R., Jeney, Z. and Bucher, F. 1995. Chronic effects of linear alkylbenzene sulfonate (LAS) and ammonia on rainbow trout (*Oncorhynchus mykiss*) fry at water criteria limits. Wat. Res. 29:2725-2729.
- 196. Hokanson, K.E.F. and Smith, L.L., Jr. 1971. Some factors influencing toxicity of linear alkylate sulfonate (LAS) to the bluegill. Transactions of the American Fisheries Society. 100:1-12.

- 197. Hollis, C.G., Phillips, W.K. and Johnson, J.E. 1976. Thermal effects on biodegradation of linear alkyl benzenesulfonate. Pages 345-350 In: Developments in industrial microbiology, Volume 17. Society for Industrial Microbiology.
- 198. Holman, W.F. and Macek, K.J. 1980. An aquatic safety assessment of linear alkylbenzene sulfonate (LAS): Chronic effects on fathead minnows. Transactions of the American Fisheries Society. 109:122-131.
- 199. Holmstrup, M. 1997. Drought tolerance in Folsomia candida Willem (Collembola) after exposure to sublethal concentrations of three soil-polluting chemicals. Pedobiologia. 41:361-368.
- Holmstrup, M. and Krogh, P.H. 2001. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 3. Sublethal effects on soil invertebrates. Environmental Toxicology and Chemistry. 20:1673-1679.
- 201. Holt, M.S., Daniel, M., Buckland, H. and Fox, K.K. 2000. Monitoring studies in the UK designed for validation of the Geo-Referenced Exposure Assessment Tool for European Rivers (GREAT-ER), 5th World CESIO Congress. V.2:1358-1369, Firenze, Italy.
- 202. Holt, M.S., Matthijs, E. and Waters, J. 1989. The concentrations and fate of linear alkylbenzene sulphonate in sludge amended soils. Wat. Res. 23:749-759.
- 203. Holt, M.S., Waters, J., Comber, M.H.I., Armitage, R., Morris, G., and Newbery, C. 1995. AIS/CESIO environmental surfactant monitoring programme. SDIA sewage treatment pilot study on linear alkylbenzene sulphonate (LAS). Wat. Res. 29:2063-2070.
- 204. Holysh, M., Paterson, S., Mackay, D. and Bandurraga, M.M. 1986. Assessment of the environmental fate of linear alkylbenzenesulphonates. Chemosphere. 15:3-20.
- 205. Hon-Nami, H. and Hanya, T. 1980. Linear alkylbenzene sulfonates in river, estuary and bay water. Water Research. 14:1251-1256.
- 206. Hons, G. 1996. Alkylarylsulfonates: history, manufacture, analysis, and environmental properties. Surfactant Sci. Series. 56:39-108.
- 207. Hope, J. 1977. Absence of chromosome damage in the bone marrow of rats fed detergent actives for 90 days. Mutation Research. 56:47-50.
- 208. Hopkins, R and Kain, J.M. 1971. The effect of marine pollutants on Laminarea hyperboria. Mar. Pollut. Bull. 2:75-77.
- 209. Hopkins, R and Kain, J.M. 1978. The effects of some pollutants on the survival, growth and respiration of Laminarea hyperborea. Estuarine and Coastal Marine Science. 7:531-553.
- 210. Hopper, S.S., Hulpieu, H.R. and Cole, V.V. 1949. Some toxicological properties of surface-active agents. Journal of the American Pharmaceutical Association. 38:428-432.
- 211. Howes, D. 1975. The percutaneous absorption of some anionic surfactants. J. Soc. Cosmet. Chem. 26:47-63.
- 212. Hrsak, D., Bosnjak, M. and Johanides, V. 1981. Kinetics of linear alkylbenzene sulphonate and secondary alkane sulphonate biodegradation. Tenside Detergents. 18:137-140.

- 213. Hrsak, D., Bosnjak, M., and Johanides, V. 1982. Enrichment of linear alkylbenzene sulphonate (LAS) degrading bacteria in continuous culture. Journal of Applied Bacteriology. 53:413-422.
- 214. Hrsak, D. 1995. Aerobic transformation of linear alkylbenzenesulphonates by mixed methane-utilizing bacteria. Arch. Environ. Contam. Toxicol. 28:265-272.
- Huber, L. 1989. Conclusions for an ecological evaluation of LAS. Tenside Surfactants Detergents. 26:71-74.
- Huber, W., Zeiris, F.J., Feind, D. and Neugebaur, K. 1987. Ecotoxicological evaluation of environmental chemicals by means of aquatic model ecosystems (translation). Bundesministerium fuer Forschung and Technologie, Research Report (03-7314-0).
- 217. Huddleston, R.L. and Allred, R.C. 1963. Microbial oxidation of sulfonated alkylbenzenes. Dev. Ind. Microbiol. 4:24-38.
- 218. Huddleston, R.L. and Allred, R.C. 1964. Evaluation of detergent degradation using activated sludge. Symposium: Biodegradable Detergents, Part I. American Oil Chemists' Society, 55th Annual Meeting, New Orleans, Louisiana, April 19-22, 1964.
- 219. Huddleston, R.L. and Nielsen, A.M. 1979. LAS biodegradation: The fate of the aromatic ring. Soap/Cosmetics/Chemical Specialties. March:34-44.
- 220. Huntsman. 2002. Report of melting point analysis for NANSA HS 85/5. Cover memo from A. Ashworth to K.B. Sellstrom dated April 12, 2002.
- 221. Hwang, D., Chen, M., Yoshida, T. and Jeng, S. 1993. Toxic effects of linear alkylbenzene sulfonate on the tiger prawn, Penaeus monodon. Ecotoxicology and Environmental Safety. 26:285-292.
- 222. Hyman, E.S. 1966. Some observations on the partition of Na+ and K+ into a lipid phase. Biophysical Journal. 6:405-410.
- 223. Iimori, M., Ogata, T. and Kudo, K. 1972. Eye irritation testing of surface active agents in experimental animals. Jour. Jap. Oil Chem. Soc. 22:807-813 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 224. Ikawa, M., Yoneyama, M., Nakao, T. and Hiraga, K. 1978. Uptake of organic acid and organic base by renal cortical slices of rats treated with LAS and ABS. Ann. Rep. Tokyo Metr. Res. Lab. P.H. 29:51-54 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 225. Imahori, A., Kinagawa, T. and Shiobara, S. 1976. Effects of linear alkyl benzene sulfonate (LAS) applied dermally to pregnant mice and their fetuses. Jpn. J. Public Health. 23:68-72 (in Japanese); cited in IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 226. Imokawa, G., Sumura, K. and Katsumi, M. 1975. Study on skin roughness caused by surfactants. I. A new method in vivo for evaluation of skin roughness. J. Am. Oil Chem. Soc. 52:479-483.
- Imokawa, G., Sumura, K. and Katsumi, M. 1975. Study on skin roughness caused by surfactants. II. Correlation between protein denaturation and skin roughness. J. Am. Oil Chem. Soc. 52:484-489.

- 228. Imokawa, G. and Mishima, Y. 1979. Cumulative effect of surfactants on cutaneous horny layers: Lysosome labilizing action. Contact Dermatitis. 5:151-162.
- 229. Inaba, K. and Amano, K. 1988. HPLC determination of linear alkylbenzenesulfonate (LAS) in aquatic environment. Seasonal changes in LAS concentration in polluted lake water and sediment. Inter. J. Environ. Anal. Chem. 34:203-213.
- 230. Inoue, K., Kaneko, K. and Yoshida, M. 1978. Adsorption of dodecylbenzenesulfonates by soil colloids and influence of soil colloids on their degradation. Soil Sci. Plant Nutr. 24:91-102.
- 231. Inoue, K., Shibata, T., Hamano, Y., Oda, Y., Kuwano, A., Yamamoto, H., Mitsuda, B. and Kunita, N. 1977. *In vivo* cytogenetic tests of some synthetic detergents in mice. Ann Res. Osaka Prefect Inst. Public Health. 8:17-24 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 232. Inoue, IK. and Sunakawa, T. 1979. Mutagenicity tests of surfactants. Jpn Fragrance J. 38:67-75 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: for Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 233. Inoue, K., Sunakawa, T. and Takayama, S. 1980. Studies of *in vitro* cell transformation and mutagenicity by surfactants and other compounds. Fd. Cosmet. Toxicol. 18:289-296.
- 234. IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland.
- 235. Ishii, Y., Samejima, Y., Saji, F. and Nomura, T. 1990. Effect of alcohol sulphate, linear alkylbenzene sulfonate and natural soap on the development of fertilized eggs of the mouse *in vitro*. Mutation Research. 242:151-155.
- 236. Itoh, S., Naito, S. and Unemoto, T. 1985. Acetoacetic acid as a potential trihalomethane precursor in the biodegradation intermediates produced by sewage bacteria. Water Research. 19:1305-1309.
- 237. Ito, R., Kawamura, H., Chang, H.S., Kudo, K., Kajiwara, S., Toida, S., Seki, Y., Hashimoto, M. and Fukushima, A. 1978. Acute, subacute and chronic toxicity of magnesium linear alkylbenzene sulfonate (LAS-Mg). J. Med. Soc. Toho, Japan. 25 (5-6):850-875 (in Japanese). Referenced in IPCS, Environmental Health Criteria 169. Linear Alkylbenzene Sulfonates and Related Compounds.
- Itokawa, Y., Tabei, R., Kamohara, K. and Fujiwara, K. 1975. Effect of simultaneous administration of polychlorinated biphenyls and alkylbenzene sulfonic acid salt in rats. Archives of Environmental Contamination. 3:115-131.
- 239. Itrich, N. and Federle, T.W. 1995. Primary and ultimate biodegradation of anionic surfactants under realistic discharge conditions in river water. Presented at the SETAC Meeting, Vancouver, Canada.
- 240. Javed, S., Misra, V. and Viswanathan, P.N. 1988. In vitro studies on the effect of linear alkyl benzene sulphonate on serum albumin. International Journal of Cosmetic Science. 10:241-246.
- 241. Jensen, J. 1999. Fate and effects of linear alkylbenzene sulfonates (LAS) in the terrestrial environment. The Science of the Total Environment. 226:93-111.

- 242. Jensen, J. and Krogh, P.H. 1997. Ecotoxicological assessment of sewage sludge application. Presented at the specialty conference Management and Fate of Toxic Organics in Sludge Applied to Land, Copenhagen, Denmark, April 30 May 2, 1997.
- 243. Jensen, J. and Krogh, P.H. 1999. Ecological assessment of sewage sludge application. Proceedings, Nordiska Jordbruks forskares Forening, Seminar 292. Jokionen, Finland, November 23-25, 1998, pp. 98-100.
- 244. Jensen, J., Lokke, H., Holmstrup, M., Krogh, P.H. and Elsgaard, L. 2001. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 5. Probabilistic risk assessment of linear alkylbenzene sulfonates in sludge-amended soils. Environmental Toxicology and Chemistry. 20:1690-1697.
- 245. Jimenez, L., Breen, A., Thomas, N., Federle, T.W. and Sayler, G.S. 1991. Mineralization of linear alkylbenzene sulfonate by a four-member aerobic bacterial consortium. Applied and Environmental Microbiology. 57:1566-1569.
- 246. Kaestner, W. 1992. Local tolerance (animal tests): mucous membranes and skin. Pages 127-290 In: Gloxhuber, C. and Kuenstler, K. (eds.). Anionic surfactants: biochemistry, toxicology, dermatology, second edition. Surfactant Science Series Volume 43. Marcel Dekker, Inc., New York, NY.
- 247. Kaestner, W. 1997. Local tolerance (animal tests): mucous membranes and skin. In: Anionic Surfactants: Biochemistry, Toxicology, Dermatology. 2nd Edition.
- 248. Kaestner, W., Henkel KGaA, unpublished data, Report No. 870553 (1987).
- 249. Kay, J.H., Kohn, F.E. and Calandra, J.C. 1965. Subacute oral toxicity of a biodegradable, linear alkylbenzene sulfonate. Toxicology and Applied Pharmacology. 7:812-818.
- 250. Kertesz, M.A., Kolbener, P., Stockinger, H., Beil, S. and Cook, A.M. 1994. Desulfonation of linear alkylbenzenesulfonate surfactants and related compounds by bacteria. Applied and Environmental Microbiology. 60:2296-2303.
- 251. Kikuchi, K. 1978. Observations on some tissues of mice injected with LAS synthetic detergent for varying periods from the day of birth. Kawasaki Med. J. 4:193-201.
- 252. Kikuchi, M., Wakabayashi, M., Kojima, H. and Yoshida, T. 1978. Uptake, distribution, and elimination of sodium linear alkylbenzene sulfonate and sodium alkyl sulfate in carp. Ecotoxicol. Environ. Safety. 2:115-127.
- 253. Kikuchi, M., Tokai, A. and Yoshida, T. 1986. Determination of trace levels of linear alkylbenzenesulfonates in the marine environment by high-performance liquid chromatography. Wat. Res. 20:643-650.
- 254. Kimerle, R.A. 1989. Aquatic and terrestrial ecotoxicology of linear alkylbenzene sulfonate. Tenside Surfactants Detergents. 26:169-176.
- 255. Kimerle, R.A., Macek, K.J., Sleight, B.H. and Burrows, M.E. 1981. Bioconcentration of linear alkylbenzene sulfonate (LAS) in bluegill (*Lepomis macrochirus*). Wat. Res. 15:251-256.

- 256. Kimerle, R.A., Swisher, R.D. and Schroeder-Comotto, R.M. 1975. Surfactant structure and aquatic toxicity. Pages 25-55 In: Proceedings of the IJC symposium of structure-activity correlations in studies on toxicity and bioconcentration with aquatic organisms.
- 257. Kimerle, R.A. and Swisher, R.D. 1977. Reduction of aquatic toxicity of linear alkylbenzene sulfonate (LAS) by biodegradation. Water Research. 11:31-37.
- 258. Kinney, L.A. 1985. Approximate lethal concentrations (ALCs) by inhalation of sodium lauryl sulfate & sodium dodecylbenzene sulfonate. Dupont Haskell Laboratory Report No. 474-84.
- 259. Kishi, M., Satoh, S., Horiguchi, Y. and Ito, K. 1984. Effects of surfactants on bone marrow cells. Bull. Kanagaw Public Health Lab. 14:57-58.
- 260. Kloepper-Sams, P., Torfs, F., Feijtel, T. and Gooch, J. 1996. Effects assessments for surfactants in sludge-amended soils: A literature review and perspectives for terrestrial risk assessment. The Science of the Total Environment. 185:171-185.
- Knaebel, D.B., Federle, T.W., McAvoy, D.C. and Vestal, J.R. 1996. Microbial mineralization of organic compounds in an acidic agricultural soil: Effects of preadsorption to various soil constituents. Environmental Toxicology and Chemistry. 15:1865-1875.
- 262. Knaebel, D.B., Federle, T.W. and Vestal, J.R. 1990. Mineralisation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in 11 contrasting soils. Envir. Toxicol. Chem. 9:981-988.
- Knopp, P.V., Uhren, L.J., Rohlich, G.A. and Nichols, M.S. 1965. Field study of the removal of linear alkylate sulfonate detergents by the activated sludge process. J. Am. Oil Chem. Soc. 42:867-873.
- 264. Kobayashi, H., Ichikawa, H., Fujii, T., Yano, N., Konno, T., Hiraga, K., Nakamura, H., Watanabe, Y. and Mimura, S. 1973. Studies on toxicity of synthetic detergents. 1. Acute oral toxicity of linear and branched alkylbenzene sulfonate. Tokyo Toritsu Eisei Kenkyusho Kenkyu Nempo. 24:397-408.
- 265. Koizumi, N., Ninomiya, R., Inoue, Y., Tsukamoto, T., Fujii, M. and Yamamoto, Y. 1985. Implantation disturbance with linear alkylbenzene sulphonate in mice. Arch. Environ. Contam. Toxicol. 14:73-81.
- 266. Kolbener, P., Baumann, U., Leisinger, T. and Cook, A.M. 1995. Linear alkylbenzene sulfonate (LAS) surfactants in a simple test to detect refractory organic carbon (ROC): Attribution of recalcitrants to impurities in LAS. Environmental Toxicology and Chemistry. 14:571-577.
- 267. Kolbener, P., Baumann, U., Leisinger, T. and Cook, A.M. 1995. Nondegraded metabolites arising from the biodegradation of commercial linear alkylbenzene sulfonate (LAS) surfactants in a laboratory trickling filter. Environmental Toxicology and Chemistry. 14:561-569.
- 268. Kretchmar, B. 1972a. Acute toxicity studies with XTW-1226. Report to The Procter & Gamble Company, IBT No. A1717.
- 269. Kretchmar, B. 1972b. Acute toxicity studies with XTW-1227. Report to The Procter & Gamble Company, IBT No. A1717.
- Krisna Murti, G.S.R., Volk, V.V. and Jackson, M.L. 1966. Soil adsorption of linear alkylate sulfonate. Soil Sci. Soc. Amer. Proc. 30:685-688.

- 271. Kuchler, T. and Schnaak, W. 1997. Behaviour of linear alkylbenzene sulfonates (LAS) in sandy soils with low amounts of organic matter. Chemosphere. 35:153-167.
- 272. Kuhnt, G. 1993. Behavior and fate of surfactants in soil. Environmental Toxicology and Chemistry. 12:1813-1820.
- 273. Kujawa, M., Schnaak, W. and Kuchler, T. 1997. Occurrence of organic pollutants in sewage sludge and influence of surfactants on their mobility in amended soils. Presented at the specialty conference Management and Fate of Toxic Organics in Sludge Applied to Land. April 30 - May 2, 1997, Copenhagen, Denmark.
- 274. Kula, H. and Larink, O. 1997. Development and standardization of test methods for the prediction of sublethal effects of chemicals on earthworms. Soil Biol. Biochem. 29:635-639.
- 275. Kusk, K.O. and Petersen, S. 1997. Acute and chronic toxicity of tributyltin and linear alkylbenzene sulfonate to the marine copepod Acartia tonsa. Environmental Toxicology and Chemistry. 16:1629-1633.
- 276. Kutt, E.C. and Martin, D.F. 1974. Effect of selected surfactants on the growth characteristics of Gymnodinium breve. Marine Biology. 28:253-259.
- Kynoch, S.R. 1986a. Acute oral toxicity to rats: P-500 N-Na. Huntingdon Research Cener Report. No. 86546D/PEQ 7/AC.
- Kynoch, S.R. 1986b. Acute dermal toxicity to rats of P-500 N-Na. Huntingdon Research Center. Report No. 86718D/PEQ 8/AC.
- 279. Ladle, M., House, W.A., Armitage, P.D. and Farr, I.S. 1989. Faunal characteristics of a site subject to sewage plant discharge. Tenside Surfactants Detergents. 26:159-168.
- 280. Lal, H., Misra, V., Viswanathan, P.N. and Krishna Murti, C.R. 1983. Comparative studies on ecotoxicology of synthetic detergents. Ecotoxicology and Environmental Safety. 7:538-545.
- 281. Lal, H., Misra, V., Viswanathan, P.N. and Krishna Murti, C.R. 1984. The water flea (*Daphnia magna*) as a sensitive indicator for the assessment of toxicity of synthetic detergents. Ecotoxicology and Environmental Safety. 8:447-450.
- 282. Lal, H., Misra, V., Viswanathan, P.N. and Krishna Murti, C.R. 1984. Effect of synthetic detergents on some of the behavioral patterns of fish fingerlings (*Cirrhina mrigala*) and its relation to ecotoxicology. Bull. Environ. Contam. Toxicol. 32:109-115.
- 283. LaPoint, T.W. 1993. Aquatic hazard assessment of surfactants: how much information is needed to judge environmental safety? Environmental Toxicology and Chemistry. 12:1749.
- 284. Larson, R.J. 1983. Comparison of biodegradation rates in laboratory screening studies with rates in natural waters. Residue Reviews. 85:159-171.
- 285. Larson, R.J. 1990. Structure-activity relationships for biodegradation of linear alkylbenzenesulfonates. Environ. Sci. Technol. 24:1241-1246.
- 286. Larson, R.J. 1991. Biodegradation in regulating the environmental exposure of detergent chemicals. Chemical Times & Trends. 14:47-55.

- 287. Larson, R.J., Federle, T.W., Shrimp, R.J. and Ventullo, R.M. 1989. Behaviour of linear alkylbenzene sulfonate (LAS) in soil infiltration and groundwater. Tenside Surfactants Detergents. 26:116-121.
- 288. Larson, R.J. and Maki, A.W. 1982. Effect of LAS on the structure and function of microbial communities in model ecosystems. ASTM STP. 766:120-136.
- 289. Larson, R.J. and Payne, A.G. 1981. Fate of the benzene ring of linear alkylbenzene sulfonate in natural waters. Applied and Environmental Microbiology. 41:621-627.
- 290. Larson, R.J., Rothgeb, T.M., Shrimp, R.J., Ward, T.E. and Ventullo, R.M. 1993. Kinetics and practical significance of biodegradation of linear alkylbenzene sulfonate in the environment. Journal of the American Oil Chemists Society. 70:645-657.
- 291. Larson, R.J. and Woltering, D.W. 1995. Linear alkylbenzene sulfonate (LAS). Pp. 859-882. In: Rand, G.M. (ed). Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment. Second Edition. Taylor & Francis.
- 292. Lay, J.P., Klein, W. and Korte, F. 1983. Elimination and biodistribution studies of [¹⁴C]dodecylbenzene sulfonate in rats following low dosing in the daily diet and a single i.p. administration. Toxicology Letters. 17:187-192.
- 293. Leal, J.S., Garcia, M.T., Tomas, R. de Ferrer, J. and Bengoechea, C. 1994. Linear alkylbenzene sulfonate removal. Tenside Surf. Det. 31:253-256.
- Leo, A.J. and Hansch, C. 1979. Substituent Constants for Correlation Analysis in Chemistry and Biology. J. Wiley & Sons, N.Y.
- 295. Leon, V.M., Gonzalez-Mazo, E., Pajares, J.M.F. and Gomez-Parra, A. 2001. Vertical distribution profiles of linear alkylbenzene sulfonates and their long-chain intermediate degradation products in coastal marine sediments. Environmental Toxicology and Chemistry. 20:2171-2178.
- 296. Lewis, M.A. 1983. Effect of loading density on the acute toxicities of surfactants, copper, and phenol to *Daphnia magna* Straus. Arch. Environ. Contam. Toxicol. 12:51-55.
- 297. Lewis, M.A. 1986. Comparison of the effects of surfactants of freshwater phytoplankton communities in experimental enclosures and on algal population growth in the laboratory. Environmental Toxicology and Chemistry. 5:319-332.
- 298. Lewis, M.A. 1990. Chronic toxicities of surfactants and detergent builders to algae: a review and risk assessment. Ecotoxicology and Environmental Safety. 20:123-140.
- 299. Lewis, M.A. 1991. Chronic and sublethal toxicity of surfactants to aquatic animals: A review and risk assessment. Water Res. 25(1):101-113.
- 300. Lewis, M.A. 1992. The effects of mixtures and other environmental modifying factors on the toxicities of surfactants to freshwater and marine life. Wat. Res. 26:1013-1023.
- Lewis, M.A. and Hamm, B.G. 1986. Environmental modification of the photosynthetic response of lake plankton to surfactants and significance to a laboratory-field comparison. Wat. Res. 20:1575-1582.

- 302. Lewis, M.A. and Perry, R.L. 1981. Acute toxicities of eqimolar and equitoxic surfactant mixtures to Daphnia magna and Lepomis macrochirus. Pp. 402-418. In: Aquatic Toxicology and Hazard Assessment. Fourth conference. ASTM STP 737.
- 303. Lewis, M.A., Pittinger, C.A., Davidson, D.H. and Ritchie, C.J. 1993. In situ response of natural periphyton to an anionic surfactant and an environmental risk assessment for phytotoxic effects. Environmental Toxicology and Chemistry. 12:1803-1812.
- 304. Lewis, M.A. and Suprenant, D. 1983. Comparative acute toxicities of surfactants to aquatic invertebrates. Ecotoxicol. Environ. Safety. 7:313-322.
- 305. Lichtenstein, E.P., Fuhremann, T.W., Scopes, N.E.A. and Skrentny, R.F. 1967. Translocation of insecticides from soils into pea plants: Effects of the detergent LAS on translocation and plant growth. J. Agr. Food Chem. 15:864-869.
- Liggett, M.P. and Parcell, B.I. 1986a. Irritant effects on rabbit skin of P-500 N-Na. Huntingdon Research Center. Report No. 86400D/PEQ 9/SE.
- Liggett, M.P. and Parcell, B.I. 1986b. Irritant effects on the rabbit eye of P-500 N-Na. Huntingdon Research Center Report No. 86570D/PEQ 10/SE.
- Litovitz, T.L., Schmitz, B.F. and Bailey, K.M. 1990. 1989 Annual Report of the American Association of Poison Control Centers National Data Collection System. American Journal of Emergency Medicine. 8:394-442.
- 309. Litz, N., Doering, H.W., Thiele, M. and Blume, H.P. 1987. The behavior of linear alkylbenzenesulfonate in different soils: A comparison between field and laboratory studies. Ecotoxicology and Environmental Safety. 14:103-116.
- 310. Lopez-Zavalla, A., de Aluja, A.S., Elias, B., Manjarrez, L., Buchmann, A., Mercado, L. and Caltenco, S. 1975. The effects of ABS, LAS and AOS detergents on fish, domestic animals and plants. Progress in Water Technology. 7:73-82.
- Lundahl, P. and Cabridenc, R. 1978. Molecular structure-biological properties relationships in anionic surfactant agents. Water Research. 12:25-30.
- 312. Lung, W., Rapaport, R.A. and Franco, A.C. 1990. Predicting concentrations of consumer product chemicals in estuaries. Environmental Toxicology and Chemistry. 9:1127-1136.
- 313. Lyman, W.J. 1985. Environmental exposure from chemicals, V.I, p.31, Neely, W.B., and Blau, G.E., editors. CRC Press. Boca Raton.
- 314. Mackay, D., Di Guardo, A., Paterson, S., Kicsi, G., Cowan, C.E. and Kane, D.M. 1996. Assessment of chemical fate in the environment using evaluative, regional and local-scale models: illustrative application to chlorobenzene and linear alkylbenzene sulfonates. Environmental Toxicology and Chemistry. 15:1638-1648.
- 315. Maki, A.W. 1979. Correlations between *Daphnia magna* and fathead minnow (*Pimephales promelas*) chronic toxicity values for several classes of test substances. J. Fish. Res. Board Can. 36:411-421.
- 316. Maki, A.W. 1979. Respiratory activity of fish as a predictor of chronic fish toxicity values for surfactants. Pp. 77-95. In: Aquatic toxicology.

- 317. Maki, A.W. 1981. A. Laboratory model ecosystem approach to environmental fate and effects studies. Unpublished Internal Report, Environmental Safety Department Procter and Gamble Company, Cincinnati, Ohio.
- 318. Maki, A.W. and Bishop, W.E. 1979. Acute toxicity studies of surfactants to *Daphnia magna* and *Daphnia pulex*. Arch. Environ. Contm. Toxicol. 8:599-612.
- 319. Mallett, M.J., Grandy, N.J. and Lacey, R.F. 1997. Interlaboratory comparison of a method to evaluate the effects of chemicals on fish growth. Environmental Toxicology and Chemistry. 16:528-533.
- 320. Mampel, J., Hitzer, T., Ritter, A. and Cook, A.M. 1998. Desulfonation of biotransformation products from commercial linear alkylbenzene sulfonates. Environ. Toxicol. Chem. 17:1960-1963.
- 321. Mann, A.H. and Reid, V.W. 1971. Biodegradation of synthetic detergents evaluation by community trials: I. Linear alkylbenzene sulphonates. J. Am. Oil Chem. Soc. 48:588-594.
- 322. Marin, M.G., Bressan, M. and Brunetti, R. 1991. Effects of linear alkylbenzene sulphonate (LAS) on two marine benthic organisms. Aquatic Toxicology. 19:241-248.
- 323. Marin, M.G., Pivotti, L., Campesan, G., Turchetto, M. and Tallandini, L. 1994. Effects and fate of sediment-sorbed linear alkylbenzene sulphonate (LAS) on the bivalve mollusc Mytilus galloprovincialis Lmk. Wat. Res. 28:85-90.
- 324. Martinez, J., Vives-Rego, J. and Sanchez-Leal, J. 1989. The effect of chemical structure and molecular weight of commercial alkylbenzenes on the toxic response of *Daphnia* and naturally occurring bacteria in fresh and seawater. Wat. Res. 23:569-572.
- 325. Martinez, J., Soto, Y., Vives-Rego, J. and Bianchi, M. 1991. Toxicity of Cu, Ni and alkylbenzene sulfonate (LAS) on the naturally occurring bacteria in the Rhone River plume. Environmental Toxicology and Chemistry. 10:641-647.
- 326. Masabuchi, M., Takahashi, A., Takahashi, O. and Hiraga, K. 1976. Cytogenetic studies and dominant lethal tests with long term administration of butylated hydroxytoluene (BHT) and linear alkylbenzene sulfonate (LAS) in mice and rats. Ann. Rep. Tokyo Metrop. Res. Lab. Public Health. 27:100-104 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 327. Masuda, F., Okamoto, K. and Inoue, K. 1974. Effects of linear alkylbenzene sulfonate applied dermally to pregnant mice on fetal development. J. Food Hyg. Soc. Jap. 15(5):349-355, [in Japanese].
- 328. Masuda, F., Okamoto, K. and Inoue, K. 1973. Effects on fetuses of linear alkylbenzene sulfonate applied to mouse maternal skin during pregnancy. J. Food Hyg. Soc. Jap. 14(6):580-582.
- 329. Mathur, A.K., Narang, S., Gupta, B.N., Singh, A., Singh, S. and Shanker, R. 1992. Effect of dermal exposure to LAS detergent and HCH pesticide in guinea pigs: Biochemical and histopathologic changes in liver and kidney. J. Toxicol. Cut. Ocular Toxicol. 11:3-13.
- 330. Mathur, A.K., Gupta, B.N., Singh, A., and Shanker, R. 1986. Toxicological evaluation of a synthetic detergent after repeated oral ingestion in rats. Biol. Mem. 12:187-191.
- Matsuura, T. and Smith, J.M. 1970. Kinetics of photodecomposition of dodecyl benzene sulfonate. Ing. Eng. Chem. Fund. 9:252-260.

- 332. Matthies, W., Henkel KgaA, unpublished data, Report No. 890356 (1989).
- 333. Matthijs, E., Debaere, G., Itrich, N., Masscheleyn, P., Rottiers, A., Stalmans, M. and Federle, T. 1995. The fate of detergent surfactants in sewer systems. Wat. Sci. Tech. 31:321-328.
- 334. Matthijs, E. and De Henau, H. 1987. Determination of LAS. Tenside Surfactants Detergents. 24(4):193-199.
- 335. Matthijs, E., Holt, M.S., Kiewiet, A. and Rijs, G.B.J. 1997. Fate of surfactants in activated sludge waste water treatment plants. Tenside Surf. Det. 34:238-241.
- 336. Matthijs, E., Holt, M.S., Kiewiet, A. and Rijs, G.B.J. 1999. Environmental monitoring for linear alkylbenzene sulfonate, alcohol ethoxylate, alcohol ethoxy sulfate, alcohol sulfate, and soap. Environmental Toxicology and Chemistry. 18:2634-2644.
- 337. Matthijs, E. and Stalmans, M. 1993. Monitoring of LAS in the North Sea. Tenside Surf. Det. 30:29-33
- 338. Maurer, E.W., Cordon, T.C. and Stirton, A.J. 1971. Microaerophilic biodegradation of tallow-based anionic detergents in river water. Journal of the American Oil Chemists= Society. 48:163-165.
- 339. Maurer, J.K. and Parker, R.D. 1996. Light microscopic comparison of surfactant-induced eye irritation in rabbits and rats at three hours and recovery/day 35. Toxicologic Pathology. 24:403-411.
- 340. McAvoy, D.C., DeCarvalho, A., Nielsen, A. and Kravetz, L. 1997. Investigation of an on-site wastewater treatment system (OWTS) in sandy soil: Part 5: Predictive model for cleaning product ingredients. Poster presented at SETAC 97, San Francisco, CA, 16-20 November 1997.
- 341. McAvoy, D.C., Dyer, S.D., Fendinger, N.J., Eckhoff, W.S., Lawrence, D.L. and Begley, W.M. 1998. Removal of alcohol ethoxylates, alkyl ethoxylate sulfates, and linear alkylbenzene sulfonates in wastewater treatment. Environ. Toxicol. Chem. 17:1705-1711.
- McAvoy, D.C., Eckhoff, W.S. and Rapaport, R.A. 1993. Fate of linear alkylbenzene sulfonate in the environment. Environ. Toxicol. Chem. 12:977-987.
- 343. McEvoy, J. and Giger, W. 1986. Determination of linear alkylbenzenesulfonates in sewage sludge by high-resolution gas chromatography/mass spectrometry. Environ. Sci. Technol. 20:376-383.
- 344. McAvoy, D.C., White, C.E., Moore, B.L. and Rapaport, R.A. 1994. Chemical fate and transport in a domestic septic system: sorption and transport of anionic and cationic surfactants. Environmental Toxicology and Chemistry. 13:213-221.
- 345. McKim, J.M., J.W. Arthur and T.W. Thorslund. 1975. Toxicity of a linear alkylate sulfonate detergent to larvae of four species of freshwater fish. Bulletin of Environmental Contamination and Toxicology. 14:1-7.
- 346. Meade, R.H. (ed). 1995. Contaminants in the Mississippi River, 1987-92. U.S. Geological Survey Circular 1133.
- 347. Meylan, W.M. and Howard, P.H. 1991. Bond contribution method for estimating Henry's law constant. Environ. Toxicol. Chem. 10:1283-1293.

- 348. Meylan, W.M. and P.H. Howard. 1993. Computer estimation of the atmospheric gas-phase reaction rate of organic compounds with hydroxyl radicals and ozone. Chemosphere. 26:2293-2299.
- Michael, W.R. 1968. Metabolism of linear alkylate sulfonate and alkyl benzene sulfonate in albino rats. Toxicology and Applied Pharmacology. 12:473-485.
- 350. Mieure, J.P., Waters, J., Holt, M.S. and Matthijs, E. 1990. Terrestrial safety assessment of linear alkylbenzene sulfonate. Chemosphere. 21:251-262.
- 351. Misra, V., H. Lal, P.N. Viswanathan and C.R. Krishna Murti. 1984. 45Ca uptake from water by snails (Lymnaea vulgaris) in control and detergent-polluted samples. Ecotoxicology and Environmental Safety. 8:97-99.
- 352. Misra, V., H. Lal, G. Chawla and P.N. Viswanathan. 1985. Pathomorphological changes in gills of fish fingerlings (Cirrhina mrigala) by linear alkyl benzene sulfonate. Ecotoxicology and Environmental Safety. 10:302-308.
- 353. Misra, V., G. Chawla, V. Kumar, H. Lal, and P.N. Viswanathan. 1987. Effect of linear alkyl benzene sulfonate in skin of fish fingerlings (Cirrhina mrigala): observations with scanning electron microscope. Ecotoxicology and Environmental Safety. 13:164-168.
- Misra, V., S. Javed, S.D. Pandey and P.N. Viswanathan. 1989. Biochemical and pathomorphologic studies for safety evaluation of synthetic detergents. J. Toxicol. - Cut. & Ocular Toxicol. 8:271-278.
- 355. Misra, V., V. Kumar, S.D. Pandey, and P.N. Viswanathan. 1989. Uptake and distribution of 203Hg by fish fingerlings, Cirrhina mrigala, exposed to linear alkyl benzene sulphonate. Bull. Environ. Contam. Toxicol. 43:139-143.
- Misra, V., D.D. Pandey, and P.N. Viswanathan. 1991. Retardation of biodegradation of linear alkyl benzene sulphonate by a sublethal concentration of mercuric chloride. Bull. Environ. Contam. Toxicol. 47:561-564.
- 357. Misra, V., V. Kumar, S.D. Pandey and P.N. Viswanathan. 1991. Biochemical alterations in fish fingerlings (Cyprinus carpio) exposed to sublethal concentration of linear alkyl benzene sulphonate. Arch. Environ. Contam. Toxicol. 21:514-517.
- 358. Modler, R.F., Willhalm, R., and Yoshida, Y. 1993. Linear alkylate sulfonates. Chemical Economics Handbook, SRI International, Menlo Park, CA.
- Monsanto Company. 1972a. Linear alkylbenzene sodium sulfonate Alkylate 215 Lot CC 6772S Acute toxicity screen. Project No. Y-72-274. Unpublished report.
- Monsanto Company. 1972b. Linear alkylbenzene sodium sulfonate Alkylate 222L Lot CC 6773S Acute toxicity screen. Project No. Y-72-275. Unpublished report.
- Monsanto Company. 1971. Linear alkylbenzene sodium sulfonate Alkylate 225 Lot CC 6450 Acute toxicity screen. Project No. Y-71-119. Unpublished report.
- 362. Monsanto Company. 1992. Initial submission: chronic toxicity of linear alkylbenzene sulfonate slurry to mysid shrimp. TSCA 8ECP Doc ID 88-920007734. NTIS/OTS0538654.

- 363. Monsanto Company. 1992. Initial submission: letter to USEPA regarding bioaccumulation and depuration of LAS by aquatic organisms with attachments. TSCA 8ECP Doc ID 88-920007722. NTIS/OTS0538642.
- 364. Monsanto Company. 1992. Initial submission: aquatic toxicity of LAS pure homologues C₉₋₁₅, low and high 2-phenyl in fathead minnows and Daphnia. TSCA 8ECP Doc ID 88-920008019. NTIS/OTS0570633.
- 365. Monsanto Company. 1992. Initial submission: studies on the accumulation from water and loss of C-12 and C-13 LAS compounds by fathead minnows. TSCA 8ECP Doc ID 88-920008501. NTIS/OTS0570783.
- 366. Monsanto Company. 1992. Initial submission: toxicological investigation of linear alkylbenzene sulfonate sodium salt. TSCA 8ECP Doc ID 88-920008105. NTIS/OTS0546100.
- Monsanto Company. 1992. Initial submission: toxicological investigation of sodium sulfonate of linear alkylbenzene sulfonate-sodium salt. TSCA 8ECP Doc ID 88-920008118. NTIS/OTS0546113.
- 368. Moore, S.B., R.A. Diehl, J.M. Barnhardt and G.B. Avery. 1987. Aquatic toxicities of textile surfactants. Text. Chem. Color. 19:29-32.
- Moreno, A. and de Ferrer, J. 1991. Toxicity towards Daphnia during biodegradation of various LAS. Tenside Surfactants Detergents. 28:129-131.
- Moreno, A., de Ferrer, J. and Berna, J.L. 1990. Biodegradability of LAS in a sewer system. Tenside Surf. Det. 27:312-315.
- 371. Moreno, A., J. de Ferrer, F.R. Bevia, D. Prats, B. Vazquez and D. Zarzo. 1994. LAS monitoring in a lagoon treatment plant. Wat. Res. 28:2183-2189.
- Mortensen, G.K., Elsgaard, H., Ambus, P., Jensen, E.S., and Gron, C. 2001. Influence of plant growth on degradation of linear alkylbenzene sulfonate in sludge-amended soil. J. Environ. Qual. 30:1266-1270.
- Murmann, P. 1988. Prufung auf hautsensibilisierende Wirkung am Meerschweinchen von Marlon A 350. Huels Report No. 1387.
- 374. Murmann, P. 1984a. Akute orale Toxizitat von Marlon A 330 fur Ratten. Huels Report No. 0186.
- 375. Murmann, P. 1984b. Akute orale Toxizitat von Marlon A 386 fur Ratten. Huels Report No. 0191.
- 376. Murmann, P. 1984c. Akute orale Toxizitat von Marlon A 350 fur Ratten. Huels Report No. 209.
- 377. Murmann, P. 1983a. Prufung der akuten Hautreizwirkung von Marlon A 350. Huels Report No. 0171.
- Murmann, P. 1983b. Prufung der akuten Augen-und Schleimhautreiz Wirkung von Marlon A 350. Huels Report No. 0172
- 379. Navas, J.M., Gonzalez-Mazo, E., Wenzel, A., Gomez-Parra, A. and Segner, H. 1999. Linear alkylbenzene sulfonates and intermediate products from their degradation are not estrogenic. Marine Pollution Bulletin. 38:880-884.

- 380. Nielsen, A.M., Britton, L.N., Beall, C.E., McCormick, T.P. and Russell, G.L. 1997. Biodegradation of coproducts of commercial linear alkylbenzene sulfonate. Environ. Sci. Technol. 31:3397-3404.
- 381. Nielsen, A., DeCarvalho, A., McAvoy, D.C. and Kravetz, L. 1997. Investigation of an on-site wastewater treatment system (OWTS) in sandy soil: Part 3: Fate of anionic and nonionic surfactants. Poster presented at SETAC 97, San Francisco, CA, 16-20 November 1997.
- 382. Nielsen, A.M. and Huddleston, R.L. 1981. Ultimate biodegradation of linear alkylbenzene sulfonate alkyl and ring carbon. Dev. Ind. Microbiol. 22:415-424.
- 383. Nishihara, T., S. Hasebe, J. Nishikawa, and M. Kondo. 1997. Biodegradation of aniline, anthracene, chlornitrophen, fenitrothion and linear alkylbenzene sulphonate in pond water. Journal of Applied Microbiology. 82:441-447.
- Nolen, G.A., Klusman, L.W., Patrick, L.F. and Geil, R.G. 1975. Teratology studies of a mixture of tallow alkyl ethoxylate and linear alkylbenzene sulfonate in rats and rabbits. Toxicology. 4:231-243.
- 385. Nomura, T., S. Kimura, S. Hata, T. Kanzaki, and H. Tanaka. 1890. The synthetic surfactants AS and LAS interrupt pregnancy in mice. Life Sciences. 26:49-54.
- 386. Nomura, T., S. Hata, K. Shibata and T. Kusafuka. 1987. Killing of preimplantation mouse embryros by main ingredients of cleansers AS and LAS. Mutation Research. 190:25-29.
- 387. Nusair, T.L., Danneman, P.J., Stotts, J. and Bay, P.H.S. 1988. Consumer products: Risk assessment process for contact sensitization. Toxicologist. 8:258. (Abstract).
- 388. Nyberg, H. 1988. Growth of Selenastrum capricornutum in the presence of synthetic surfactants. Wat. Res. 22:217-223.
- 389. Oba, K., Mori, A. and Tomiyama, S. 1968. Biochemical studies of n-alpha-olefin sulfonates (II) Acute toxicity, skin and eye irritation, and some other physical properties. Journ. Jap. Oil Chem. Soc. 17:628-634. (In Japanese) cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 390. Okpokwasili, G.C. and C.N. Nwabuzor. 1988. Primary biodegradation of anionic surfactants in laundry detergents. Chemosphere. 17:2175-2182.
- Orth, R.G., R.L. Powell, G. Kutey and R.A. Kimerle. 1995. Impact of sediment partitioning methods on environmental safety assessment of surfactants. Environmental Toxicology and Chemistry. 14:337-343.
- 392. Oser, B.L. and Morgareidge, K. 1965. Toxicologic studies with branched and linear alkyl benzene sulfonates in rats. Toxicology and Applied Pharmacology. 7:819-825.
- Ou, Z., A. Yediler, Y. He, L. Jia, A. Kettrup and T. Sun. 1996. Adsorption of linear alkylbenzene sulfonate (LAS) on soils. Chemosphere. 32:827-839.
- 394. Painter, H.A. 1992. Anionic surfactants. Pages 1-88 IN de Oude, N.T. (ed). Detergents. Volume 3. Part F: Anthropogenic compounds. Springer-Verlag, New York, NY.

- 395. Painter, H.A. and Mosey, F.E. 1992. The question of the anaerobic biodegradability of linear alkyl benzene sulfonates (LAS). Pages 34-43 In: Surfactants: A world market. CESIO International Surfactants Congress and Exhibition, 1992. Brussels.
- 396. Painter, H.A. and Zabel, T.F. 1988. Review of the environmental safety of LAS. Wrc Medmendham, UK. Report No. CO 1659-M/1/EV 8658. Water Research Center.
- Painter, H.A. and T. Zabel. 1989. The behaviour of LAS in sewage treatment. Tenside Surfactants Detergents. 26:108-115.
- Palmer, A.K., Cozens, D.D., Batham, P., and Cherry, C.P. 1974. Effect of CLD on reproductive function of multiple generations in the rat. Final Report. Report No. LF010/731029.
- Palmer, A.K. and Lovell, M.R. 1971a. Effect of LAS detergent on pregnancy of the rat. Report No. 4331/71/487.
- 400. Palmer, A.K. and Lovell, M.R. 1971b. Effect of LAS detergent on pregnancy of the mouse. Report No. 4330/71/486.
- 401. Palmer, A.K. and Neuff, A.M. 1971c. Effect of LAS detergent on pregnancy of the New Zealand white rabbit. Report No. 4387/71/543.
- 402. Palmer, A.K., Readshaw, M.A. and Neuff, A.M. 1975a. Assessment of the teratogenic potential of surfactants. Part I LAS, AS, and CLD. Toxicology. 3:91-106.
- 403. Palmer, A.K., Readshaw, M.A. and Neuff, A.M. 1975b. Assessment of the teratogenic potential of surfactants. Part III Dermal application of LAS and soap. Toxicology. 4:171-181.
- 404. Palmisano, A.C., B.S. Schwab, D.A. Maruscik and R.M. Ventullo. 1991. Seasonal changes in mineralization of xenobiotics by stream microbial communities. Can. J. Microbiol. 37:939-948.
- 405. Part, P., Svanberg, O. and E. Bergstrom. 1985. The influence of surfactants on gill physiology and cadmium uptake in perfused rainbow trout gills. Ecotoxicology and Environmental Safety. 9:135-144.
- 406. Petrovic, M., Fernandez-Alba, A.R., Borrull, F., Marce, R.M., Mazo, E.G. and Barcelo, D. 2002. Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environmental Toxicology and Chemistry. 21:37-46.
- 407. Pickering, Q.H. 1966. Acute toxicity of alkyl benzene sulfonate and linear alkylate sulfonate to the eggs of the fathead minnow, Pimephales promelas. Air & Wat. Pollut. Int. J. 10:385-391.
- 408. Pickering, Q.H. and Thatcher, T.O. 1970. The chronic toxicity of linear alkylate sulfonate (LAS) to *Pimphales promelas*, Rafinesque. J. Water Pollut. Control Fed. 42:243-254.
- 409. Pitter, P. and T. Fuka. 1979. The problem of ultimate biodegradability of linear alkylbenzene sulphonates. Tenside Detergents. 16:298-302.
- 410. Pittinger, C.A., Sellers, J.S., Janzen, D.C., Koch, D.G., Rothgeb, T.M. and Hunnicutt, M.L. 1993. Environmental life-cycle inventory of detergent-grade surfactant sourcing and production. Journal of the American Oil Chemists= Society. 70:1-15.

- Pittinger, C.A., Woltering, D.M. and Masters, J.A. 1989. Bioavailability of sediment-sorbed and aqueous surfactants to *Chironomus riparius* (midge). Environmental Toxicology and Chemistry. 8:1023-1033.
- 412. Polano, M.K. 1968. The interaction of detergents and the human skin. J. Soc. Cosmetic Chemists. 19:3-20.
- 413. Potokar, M.S. 1992. Acute, subacute, and chronic toxicity data on anionics. Pages 81-116 IN Gloxhuber, C. and K. Kuenstler (eds). Anionic surfactants: biochemistry, toxicology, dermatology, 2nd edition. Marcel Dekker, Inc., New York, NY.
- 414. Prats, D., Rodriquez, M., Llamas, J.M., De La Muela, M.A., de Ferrer, J., Morena, A. and Berna, J.L. 2000. The use of specific analytical methods to assess the anaerobic biodegradation of LAS. 5th World CESIO Congress V2:1655-1658, Firenze, Italy.
- 415. Prats, D., Ruiz, F., Vazquez, B., Zarzo, D., Berna, J.L. and Moreno, A. 1993. LAS homologue distribution shift during wastewater treatment and composting: ecological implications. Environmental Toxicology and Chemistry. 12:1599-1608.
- 416. Price, K.S., Waggy, G.T. and Conway, R.A. 1974. Brine shrimp bioassay and seawater BOD of petrochemicals. Journal of the Water Pollution Control Federation. 46:63-77.
- 417. Putterman, G.J., Wolejsza, N.F., Wolfram, M.A. and K. Laden. 1977. The effect of detergents on swelling of stratum corneum. J. Soc. Cosmetic. Chem. 28:521-532.
- 418. Rapaport, R.A. and Eckhoff, W.S. 1990. Monitoring linear alkylbenzene sulfonate in the environment: 1973-1986. Environ. Toxicol. Chem. 9:1245-1257.
- 419. RBM. 1985. Test di sensibilizzazione cutanea nella cavia. RBM Exp. No. 2076.
- 420. Reiff, B., Lloyd, R., How, M.J., Brown, D. and Alabaster, J.S. 1979. The acute toxicity of eleven detergents to fish: results of an interlaboratory exercise. Water Research. 13:207-210.
- 421. Rennison, P.M., Powell, G.M., Olavescen, A.H., Howes, D. and Black, J.G. 1987. Absorption and excretion of linear alkylbenzene sulphonates in rats. Biochemical Society Transactions. 15:456.
- 422. Renzoni, A. 1974. Influence of toxicants on marine invertebrate larvae. Thalassia Jugoslavica. 10:197-211.
- 423. Rhone-Poulenc, Inc. 1992. Initial submission: Dot skin corrosion study with sodium dodecylbenzene sulfonate in rabbits. TSCA 8ECP Doc ID 88-920002935. NTIS/OTS0539895.
- 424. Richard, B., Grieu, P., Badot, P.M., and Garrec, J.P. 1996. Influence of marine salts on the localization and accumulation of surfactant in the needles of *Pinus halepensis* Mill. Ann. Sci. For. Paris 53:921-930.
- 425. Roberts, D.W. 2000. Use of octanol/water partition coefficient as hydrophobicity parameters in surfactant science. 5th World CESIO Congress 2:1517-1524, May-June 2000, Firenze, Italy.
- 426. Roberts, D.W. 1991. QSAR issues in aquatic toxicity of surfactants. Science of the Total Environment. 109/110:557-568.

- 427. Roberts, D.W. 1988. Aquatic toxicity of linear alkyl benzene sulphonates (LAS) a QSAR analysis. Pages 91-98 IN Turner, J.E., M.W. Williams, T.W. Schultz, and N.J. Kwaak (eds). Proceedings of the Third International Workshop on Quantitative Structure-Activity Relationships in Environmental Toxicology, May 22-26, 1988, Knoxville, TN. NTIS CONF-880520 (DE88013180).
- 428. Robinson, E.C. and Schroeder, R.E. 1992. Reproductive and developmental toxicity studies of a linear alkylbenzene mixture in rats. Fundamental and Applied Toxicology. 18:549-556.
- 429. Routledge, E.J. and Sumpter, J.P. 1996. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry. 15:241-248.
- 430. Roy, D. 1988. Toxicity of an anionic detergent, dodecylbenzene sodium sulfonate, to a freshwater fish, Rita rita: determination of LC50 values by different methods. Ecotoxicol. Environ. Safety. 15:186-194.
- 431. Rubio, J.A., Gonzalez-Mazo, E. and Gomez-Parra, A. 1996. Sorption of linear alkylbenzenesulfonates (LAS) on marine sediment. Marine Chemistry. 54:171-177.
- 432. Ruffo, C., Fedrigucci, M.G., Valtorta, L. and Cavalli, L. 1999. Biodegradation of anionic and non-ionic surfactants by CO₂ evolution. Acclimated and non-acclimated inoculum. Riv. It. Sostanze Grasse LXXVI: 277-283.
- 433. Sadai, M. and Mizuno, N. 1972. Effect of long term topical application of some anionic surfactants on the skin, oral mucous membrane, and tongue. Jpn Journal Dermatol. 82:207-221. (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 434. Sanchez Leal, J., Garcia, M.T., Tomas, R., de Ferrer, J. and Bengoechea, C. 1994. Linear alkylbenzene sulfonate removal. Tenside Surf. Det. 31:253-256.
- 435. Sanz, J.L., Rodriguez, M., Amils, R., Berna, J.L., de Ferrer, J. and Moreno, A. 1999. Anaerobic biodegradation of LAS (Linear Alkylbenzene Sulfonate): Inhibition of the methanogenic process. La Rivista Holiana Delle Sostanze Grasse. LXXVI:307-311.
- 436. Sarrazin, L., Arnoux, A., Rebouillon, P. and Monod, J. 1997. Biodegradation of linear alkylbenzenesulfonate (LAS) in briny water and identification of metabolites using HPLC analysis by direct injection of samples. Toxicological and Environmental Chemistry. 58:209-216.
- 437. Sato, K., Ando, H., Yuzawa, K. and Hiraga, K. 1972. Studies on toxicity of synthetic detergents (III) Examination of teratogenic effects of alkyl benzene sulfonates spread on the skin of mice. Ann. Rep. Tokyo Metrop. Res. Lab. Public Health. Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 438. Schmidt, E.J. and Kimerle, R.A. 1981. New design and use of a fish metabolism chamber. In: Branson, D.R. and Dickson, K.L. (eds.). Aquatic Toxicology and Hazard Assessment: Fourth Conference, ASTM STP 737, 436-448.
- 439. Schoeberl, P. 1997. Linear alkylbenzenesulphonate (LAS) monitoring in Germany. Tenside Surf. Det. 34:233-237.

- 440. Schoeberl, P. 1997. Ecological assessment of surfactants. Tenside Surfactants Detergents. 34:28-36.
- 441. Schoeberl, P. 1993a. Bestimmung der Mutagenitat von Marlon A 390 im Salmonella/Sauger-Mikrosomen-Mutagenitatstest nach Ames. Huels Final Report No. AM-93/12.
- 442. Schoeberl, P. 1993b. Bestimmung der biologischen Abbaubarkeit von Marlon A 390 im DOC-DIE AWAY Test. Huels Final Report No. DDA-21.
- 443. Schoeberl, P. 1993c. Bestimmung der biologischen Abbaubarkeit von Marlon A 390 im DOC-DIE AWAY Test. Huels Report No. DDA-32.
- 444. Schoeberl, P. 1991. Coupling the OECD confirmatory test with continuous ecotoxicity tests. Tenside Surf. Det. 28:6-14.
- 445. Schoeberl, P. 1989. Basic principles of LAS biodegradation. Tenside Surfactants Detergents. 26:86-94.
- 446. Scholz, N. 1991. Coupling the OECD confirmatory test with ecotoxicity tests. Tenside Surf. Det. 28:277-281.
- 447. Scholz, N. 1992. Bestimmung der Auswirkungen von Marlon A 390 auf das Wachstum von *Scenedesmus subspicatus*. Huels Final Report No. AW-291.
- 448. Scholz, N. 1993. Bestimmung der bacterientoxizitat von Marlon A 390 in Pseudomonas-zellvermehrungs-Hemmtest. Huels-Final Report No. PZ-93/10.
- 449. Scholz, N. 1997. Ecotoxicity of surfactants. Tenside Surf. Det. 34:229-232.
- 450. Scholz, N. and Muller, F.J. 1992. The riverine biocoenosis model (aquatic stair case model). A test system for determining the ecotoxicity and biodegradation under reality approximate riverine conditions. Chemosphere. 25:563-579.
- 451. Schroder, F.R. 1995. Concentrations of anionic surfactants in receiving riverine water. Tenside Surf. Det. 32:492-497.
- 452. Schroeder, F.R. 1995. Monitoring surfactants and other detergent constituents in The Rhine Basin: Results and perspectives from more than 30 years of experience. SOFW-Journal 121:420-427.
- 453. Schroder, F.R. 1997. Computer models as important tools for the environmental exposure analysis of surfactants. Tenside Surf. Det. 34:225-228.
- 454. Schroder, F.R. 1997. A Geography-Referenced Regional Exposure Assessment Tool for European Rivers (GREAT-ER). Tenside Surfactants Detergents. 34:442-445.
- 455. Schroder, P. 1997. Linear alkylbenzenesulphonate (LAS) monitoring in Germany. Tenside Surfactants Detergents. 34:233-237.
- 456. Severinsen, M., Andersen, M.B., Chen, F. and Nyholm, N. 1996. A regional chemical fate and exposure model suitable for Denmark and its coastal sea. Chemosphere. 32:2159-2175.
- 457. Sharma, A.K., Bandre, T.R., Srinivasu, T. and Chandra, N. 1985. Deleterious effects of detergents on plants. Environment & Ecology. 3:444-445.
- 458. Shimp, R.J. 1989. LAS biodegradation in estuaries. Tenside Surfactants Detergents. 26:390-393.

- 459. Shimp, R.J., Lapsins, E.V. and Ventullo, R.M. 1994. Chemical fate and transport in a domestic septic system: biodegradation of linear alkylbenzene sulfonate (LAS) and nitrilotriacetic acid (NTA). Environmental Toxicology and Chemistry. 13:205-212.
- 460. Shimp, R.J. and Larson, R.J. 1996. Estimating the removal and biodegradation potential of radiolabeled organic chemicals in activated sludge. Ecotoxicology and Environmental Safety. 34:85-93.
- 461. Shiobara, S. and Imahori, A. 1976. Effects of linear alkylbenzene sulfonate orally administered to pregnant mice and their fetuses. J. Food Hyg. Soc. Jpn. 17:295-301 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 462. Shutter, S.B., Sudicky, E.A. and Robertson, W.D. 1994. Chemical fate and transport in a domestic septic system: application of a variably saturated model for chemical movement. Environmental Toxicology and Chemistry. 13:223-231.
- Sigoillot, J. and Nguyen, M. 1992. Complete oxidation of linear alkylbenzene sulfonate by bacterial communities selected from coastal seawater. Applied and Environmental Microbiology. 58:1308-1312.
- 464. Singh, J., Chawla, G., Nagvi, S.H.N. and Viswanathan, P.N. 1994. Combined effects of cadmium and linear alkyl benzene sulfonate on Lemna minor L. Ecotoxicology. 3:59-67.
- 465. Soap and Detergent Association (SDA). 1996. Linear Alkylbenzene Sulfonate.
- 466. Soderlund, E. 1992. Sodium dodecylbenzene sulfonate (CAS No: 25155-30-0). Pages 209-233 IN Health effects of chemicals, Volume 3. Nord 1995:28. ISBN 92 9120 716 0.
- 467. Smith, D.L. 1997. Impact of composition on the performance of sodium linear alkylbenzenesulfonate (NaLAS). JAOCS 74:837-845.
- 468. Stalmans, M., Matthijs, E. and de Oude, N.T. 1991. Fate and effect of detergent chemicals in the marine and estuarine environment. Water Sci. Tech. 24:115-126.
- 469. Steber, V.J. 1979. Untersuchungen zum biologischen abbau von c-ringmarkeiertem linearen alkylbenzolsulfonat in oberfl chenwasser – und klaranlagenmodellen. Tenside Detergents. 16:140-145.
- 470. Steber, J. 1991. Wie vollstandig sind Tenside abbaubar? Test-und Auswertemethoden. Textilveredlung 26:348-354.
- 471. Stenton, S.C., Dennis, J..H., Walters, E.H. and Hendrick, D.J. 1990. Asthmagenic properties of a newly developed detergent ingredient: sodium iso-nonanoyl oxybenzene sulphonate. British Journal of Industrial Medicine. 47:405-410.
- 472. Sterzel, W. 1992. Daily human intake. Pages 411-417 IN Gloxhuber, C. and K. Kuenstler (eds). Anionic surfactants: biochemistry, toxicology, dermatology, second edition. Surfactant Science Series Volume 43. Marcel Dekker, Inc., New York, NY.
- 473. Sueishi, T., Morioka, T. Kaneko, H., Kusaka, M., Yagi, S. and Chikamis, D. 1988. Environmental risk assessment of surfactants: fate and environmental effects in Lake Biwa basin. Regulatory Toxicology and Pharmacology. 8:4-21.

- 474. Sunakawa, T., Ikida, Y. and Okamoto, K. 1979. Absorption, distribution, metabolism, and excretion of linear alkylbenzene sulfonate in rats. J. Jpn. Oil Chem. Soc. 39:59-68 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 475. Sunakawa, T., Inoue, K. and Okamoto, K. 1981. Studies on the mutagenicity of surfactants, mutagenicity of surfactants following activation with various liver homogenates (S-9) and mutagenicity in the presence of norharman. Hyg. Chem. 27:204-211. Cited in IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland. Original article in Japanese.
- 476. Survey data for Industry Coalition for the SIDS Assessment of LAS. 2002.
- 477. Swedmark, M., Braaten, B., Emanuelsson, E. and Granmo, A. 1971. Biological effects of surface active agents on marine animals. Marine Biology. 9:183-201.
- 478. Swisher, R.D. 1964. Fish bioassays of linear alkylate sulfonates (LAS) and intermediate biodegradation products. J. Am. Oil Chem. Soc. 41:746-752.
- 479. Swisher, R.D. 1981. The problem of ultimate biodegradability of linear alkylbenzene sulfonates: an extension. Tenside Detergents. 18:57-63.
- 480. Swisher, R.D. 1987. Surfactant biodegradation, second edition. Surfactant Science Series Volume 18. Marcel Dekker, Inc., New York, NY.
- 481. Swisher, R.D., Gledhill, W.E., Kimerle, R.A. and Taulli, T.A. 1978. Carboxylated intermediates in the biodegradation of linear alkylbenzene sulfonates (LAS). VII International Congress on Surface Active Substance, Proceedings, Moscow, 1976 4:218-230.
- 482. Tabor, C.F. and Barber, L.B. 1996. Fate of linear alkylbenzene sulfonate in the Mississippi River. Environ. Sci. Technol. 30:161-171.
- 483. Tabor, C.F., Barber II, L.B. and Runnells, D.D. 1993. Anionic surfactants in the Mississippi River: A detailed examination of the occurrence and fate of linear alkylbenzene sulfonate. Presented at the American Chemical Society Meeting, Denver, CO. March 28 April 2, 1993.
- 484. Takada, H. and Ishiwatari. R. 1987. Linear alkylbenzenes in urban riverine environments in Tokyo: distribution, source, and behavior. Environ. Sci. Technol. 21:875-883.
- 485. Takada, H., Ishiwatari, R. and Oguran N. 1992. Distribution of linear alkylbenzenes (LABs) and linear alkylbenzenesulphonates (LAS) in Tokyo Bay sediments. Estuarine, Coastal and Shelf Science. 35:141-156.
- 486. Takada, H., Ogura, N. and Ishiwatari, R. 1992. Seasonal variations and modes of riverine input of organic pollutants to the coastal zone: 1. Flux of detergent-derived pollutants to Tokyo Bay. Environ. Sci. Technol. 26:2517-2523.
- 487. Takada, H., Mutoh, K., Tomita, N., Miyadzu, T. and Ogura, N. 1994. Rapid removal of linear alkylbenzenesulphonates (LAS) by attached biofilm in an urban shallow stream. Wat. Res. 28:1953-1960.

- 488. Takahashi, M. 1970. Effect of alkylbenzene sulfonate as a vehicle for 4-nitroquinoline-1-oxide on gastric carcinogenesis in rats. Gann. 61:27-33.
- 489. Takahashi, M., Fukushima, S. and Hananouchi, M. 1975. Induction of undifferentiated adenocarcinoma in the stomach of rats by N-methyl-N'-nitro-N-nitrosoguanidine with various kinds of surfactants. Gann. 17:255-267.
- 490. Takahashi, M., Fukushima, S. and Sato, H. 1973. Carcinogenic effect of N-methyl-N'-nitro-Nnitrosoguanidine with various kinds of surfactants in the glandular stomach of rats. Gann. 64:211-218.
- 491. Takahashi, M. and Sato, H. 1969. Effect of 4-nitroquinoline-1-oxide with alkylbenzene sulfonate on gastric carcinogensis in rats. Gann. 8:241-246.
- 492. Takahashi, M., Sato, K., Ando, H., Kubo, Y. and Hiraga, K. 1975. Teratogenicity of some synthetic detergents and linear alkylbenzene sulfonate (LAS). Ann. Rep. Tokyo Metrop. Res. Lab. Public Health 26: 67-78 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 493. Takamatsu, Y., Nishimura, O., Inamori, Y., Sudo, R. and Matsumura, M. 1996. Effect of temperature on biodegradability of surfactants in aquatic microcosm system. Wat. Sci. Tech. 34:61-68.
- 494. Takamura, K. 1995. Chironomids fail to emerge from LAS-contaminated water. Ecotoxicology. 4:245-257.
- 495. Takase, Y., Shinshu University, School of Medicine. 1978. Report on Studies on Synthetic Detergents, October 1978. Japan's Science and Technology Agency [in Japanese].
- 496. Taniguchi, S., Yamada, A., Morita, S., Ogaki, S. and Noda, T. 1978. Results of studies on synthetic detergents. Tokyo, Science and Technology Agency, Research Coordination Bureau. 18-54.
- 497. Tattersfield, L.J, Mitchell, C.G., Holt, M., Girling, A.G., Pearson, N. and Ham, L. 1996. Linear alkylbenzene (LAS): Fate and effects in outdoor artificial streams and pools An extended study. Internal report. Shell Research and Technology Centre, Thornton. Document No. TNER.96.005.
- 498. Tattersfield, L.J., Holt, M. and Girling, A.G. 1995. The fate and effects of linear alkylbenzene sulfonate (LAS) in outdoor artificial streams and pools. External report. Shell Research Limited, Sittingbourne Research Centre. Document No. SBER.95.009.
- 499. Taylor, M.J. 1985. Effect of diet on the sensitivity of *Daphnia magna* to linear alkylbenzene sulfonate. In: Cardwell, R.D., Purdy, R. and Bahner, R.C (ed.) Aquatic Toxicology and Hazard Assessment. Seventh Symposium Pp. 53-72. ASTM STP 854, America Society for Testing and Materials, Philadelphia.
- 500. Temara, A., Carr, G., Webb, S., Versteeg, D. and Feijtel, T. 2001. Marine risk assessment: linear alkylbenzene sulfonate (LAS) in the North Sea. Marine Poll. Bulletin. 42:635-642.
- 501. Temmick, H. and Klapwijk, B. 2004. Fate of LAS in activated sludge plants. Water Research 38:903-912.
- 502. Terzic, S. and Ahel, M. 1993. Determination of linear alkylbenzene sulphonates in Krka River Estuary. Bull. Environ. Contam. Toxicol. 50:241-246.

- 503. Terzic, S. and Ahel, M. 1994. Input and behaviour of linear alkylbenzenesulphonates (LAS) in a stratified estuary. Marine Pollution Bulletin. 28:735-740.
- 504. Thatcher, T.O. and Santner, J.F. 1967. Acute toxicity of LAS to various fish species. Pages 996-1002 IN Proceedings of the 21st Industrial Waste Conference, Purdue University.
- 505. Tiba, S. 1972. Studies on the acute and chronic toxicity of linear alkylbenzene sulfonate. J. Food Hyg. Soc. Jpn. 16:66-71 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 506. Tiba, S., Shiobara, S., Imahori, A. and Kitagawa, T. 1976. Effects of linear alkylbenzene sulfonate on dam, fetus, and newborn rat. J. Food Hyg. Soc. Jpn. [Shokuhin Eiseigaku Zasshi], 17 (1): 66-71 (in Japanese). Referenced in IPCS, Environmental Health Criteria 169. Linear Alkylbenzene Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland. Original article in Japanese.
- 507. Tolls, J., Haller, M., DeGraaf, I., Thijssen, M.A.T.C. and Sijm, D.T.H.M. 1997. Bioconcentration of LAS: experimental determination and extrapolation to environmental mixtures. Environ. Sci. Technol. 31:3426-3431.
- 508. Tolls, J., Kloepper-Sams, P. and Sijm, D.T.H.M. 1994. Surfactant bioconcentration: a critical review. Chemosphere. 29:693-717.
- 509. Tolls, J. and Sijm, D.T.H.M. 1995. A preliminary evaluation of the relationship between bioconcentration and hydrophobicity for surfactants. Environmental Toxicology and Chemistry. 14:1675-1685.
- 510. Tolls, J. and Sijm, D.T.H.M. 2000. Estimating the properties of surface-active chemicals. In: Boethling, R.S. and Mackay, D. Handbook of Property Estimation Methods for Chemicals. Lewis Publishers.
- 511. Toshima, Y., Moriya, T. and Yoshimura, K. 1992. Effects of polyethylene (20) sorbitan monooleate on the acute toxicity of linear alkylbenzenesulfonate (C¹²LAS) to fish. Ecotoxicology and Environmental Safety. 24:26-36.
- 512. Traina, S.J., McAvoy, D.C. and Versteeg, D.J. 1996. Association of LAS with dissolved humic substances and its effect on bioavailability. Env. Sci. Technol. 30:1300-1309.
- 513. Trehy, M.L., Gledhill, W.E., Mieure, J.P., Adamove, J.E., Nielsen, A.M., Perkins, H.O. and Eckhoff, W.S. 1996. Environmental monitoring for linear alkylbenzene sulfonates, dialkyltetralin sulfonates and their biodegradation intermediates. Environmental Toxicology and Chemistry. 15:233-240.
- 514. Tsai, C. and McKee, J.A. 1978. The toxicity to goldfish of mixtures of chloramines, LAS and copper. Technical Report No. 44, Water Resources Research Center, University of Maryland, College Park, MD. NTIS PB-280-554.
- 515. Ukeles, R. 1965. Inhibition of unicellular algae by synthetic surface-active agents. J. Phycol. 1:102-110.
- 516. United Nations Environmental Programme and the World Health Organization. 1996. Assessment of the state of pollution of the Mediterranean Sea by anionic detergents. MAP Technical Report Series No. 110. UNEP, Athens.

- 517. Urano, K., Saito, M. and Murata, C. 1984. Adsorption of surfactants on sediments. Chemosphere. 13:293-300.
- 518. Urano, K. and Saito, M. 1985. Biodegradability of surfactants and inhibition of surfactants to biodegradation of other pollutants. Chemosphere. 14:1333-1342.
- 519. USEPA. 2000. EPI Suite v3.10.
- 520. Utsunomiya, A., Watanuki, T., Matsushita, K., Nishina, M. and Tomita, I. 1997. Assessment of the toxicity of linear alkylbenzene sulfonate and quaternary alkylammonium chloride by measuring 13C-glycerol in Dunaliella sp. Chemosphere. 35:2479-2490.
- 521. Utsunomiya, A., Watanuki, T., Matsushita, K. and Tomita, I. 1997. Toxic effects of linear alkylbenzenesulfonate and quaternary alkylammonium chloride on *Dunaliella* sp. as measured by 1H-NMR analysis of glycerol. Chemosphere. 35:1215-1226.
- 522. Utsunomiya, A., Watanuki, T., Matsushita, K. and Tomita, I. 1997. Toxic effects of linear alkylbenzene sulfonate, quaternary alkylammonium chloride and their complexes on Dunaliella sp. and Chlorella pyrenoidosa. Environmental Toxicology and Chemistry. 16:1247-1254.
- 523. Valtorta, L., Radici, P., Calcinai, D., and Cavalli, L. 2000. Recent developments of LAB/LAS. La Rivista Italiana Delle Sostanze Grasse LXXVII: 73-76.
- 524. van de Plassche, E. and De Bruijn, J. 1997. Risk assessment of four major surfactant groups in the Netherlands. Tenside Surf. Det. 34:242-249.
- 525. van de Plassche, E.J., de Bruijn, J.H.M., Stephenson, R.R., Marshall, S.J., Feijtel, T.C.J. and Belanger, S.E. 1999. Predicted no-effect concentrations and risk characterization of four surfactants: Linear alkylbenzene sulfonate, alcohol ethoxylates, alcohol ethoxylated sulfates, and soap. Environmental Toxicology and Chemistry. 18:2653-2663.
- 526. Van Emden, H.M., Kroon, C.C.M., Schoeman, E.N. and van Seventer, H.A. 1974. The toxicity of some detergents tested on Aedes aegypti L., Lebistes reticulatus Peters, and Biomphalaria glabrata (Say). Environ. Pollut. 6:297-308.
- 527. Van Scott, E.J. and Lyon, L.B. 1953. A chemical measure of the effect of soaps and detergents on the skin. Journal of Investigative Dermatology. 21:199-203.
- 528. Verge, C. and Moreno, A. 1996a. Toxicity of anionic surfactants to green microalgae "Scenedesmus subspicatus" and "Selenastrum capricornutum". Tenside Surf. Det. 33:166-168.
- 529. Verge, C. and Moreno, A. 1996b. Toxicity of anionic surfactants to the bacterial population of a waste water treatment plant. Tenside Surf. Det. 33:323-327.
- Versteeg, D.J., Stalmans, M., Dyer, S.D. and Janssen, C. 1997. Ceriodaphnia and daphnia: a comparison of their sensitivity to xenobiotics and utility as a test species. Chemosphere. 34:869-892.
- 531. Versteeg, D.J., Stanton, D.T., Pence, M.A. and Cowan, C. 1997. Effects of surfactants on the rotifer, Brachionus calyciflorus, in a chronic toxicity test and in the development of QSARs. Environmental Toxicology and Chemistry. 16: 1051-1058.

- 532. Vives-Rego, J., Lopez-Amoros, R., Guindulain, T., Garcia, M.T., Comas, J., and Sanchez-Leal, J. 2000. Microbial aspects of linear alkylbenzene sulfonate degradation in coastal water. Journal of Surfactants and Detergents. 3:303-308.
- 533. Vives-Rego, J., Martinez, J. and Calleja, A. 1991. Aquatic toxicity of LAS. Tenside Surfactants Detergents. 28:31-34.
- 534. Vives-Rego, J., Vaque, M.D., Sanchez Leal, J. and Parra, J. 1987. Surfactants biodegradation in sea water. Tenside Surfactants Detergents. 24:20-22.
- 535. Vogel, W.J.B. 1994. Trends in surfactant raw materials: petrochemicals. Pages 123-126 IN Cahn, A. (ed). Proceedings of the 3rd world conference on detergents: Global perspectives. AOCS Press, Champaign, Illinois.
- 536. Wagner, S. and Schink, B. 1987. Anaerobic degradation of nonionic and anionic surfactants in enrichment cultures and fixed-bed reactors. Wat. Res. 21:615-622.
- 537. Wakabayashi, M., Kikuchi, M., Kojima, H. and Yoshida, T. 1978. Bioaccumulation profile of sodium linear alkylbenzene sulfonate and sodium alkyl sulfate in carp. Chemosphere. 11:917-924.
- 538. Ward, T.E. and Larson, R.J. 1989. Biodegradation kinetics of LAS in sludge-amended agricultural soils. Ecotox. and Environ. Safety. 17:119-130.
- 539. Watari, N., Torizawa, K., Kanai, M. and Suzuki, Y. 1977. Ultrastructural observations of the protective effect of glycyrrhizin for mouse liver injury caused by oral administration of detergent ingredient (LAS) J. Clin. Electron. Microscopy 10:121-139 (in Japanese) cited in IPCS. 1996. Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates and Related Compounds. World Health Organization, Geneva, Switzerland.
- 540. Waters, J. and Feijtel, T.C.J. 1995. AIS/CESIO environmental surfactant monitoring programme: outcome of five national pilot studies on linear alkylbenzene sulphonate (LAS). Chemosphere 30:1939-1956.
- 541. Waters, J. and J.T. Garrigan. 1983. An improved microdesulphonation/gas liquid chromatography procedure for the determination of linear alkylbenzene sulphonates in U.K. rivers. Water Res. 17:1549-1562.
- 542. Waters, J., Holt, M.S., and Matthijs, E. 1989. Fate of LAS in sludge amended soils. Tenside Surfactants Detergents. 26(2):129-135.
- 543. Webb, S., Comber, S., Marshall, S. and Hoss, S. 2001. Toxicity of the anionic surfactant linear alkylbenzene sulfonate (LAS) to *Lubriculus variegatus* and *Caenorhabditis elegans* (abstract only). SETAC Congress, Wien.
- 544. Wickbold, R. 1964. Zwischenprodukte beim Abbau eines geradkettigen Alkylbenzolsulfonates. Vortrage IV, Inern. Kongr. F. grenzflachenaktive Stoffe, Brussel. (not available for review)
- 545. Wild, S.R. and Jones, K.C. 1992. Organic chemicals entering agricultural soils in sewage sludges: screening for their potential to transfer to crop plants and livestock. Science of the Total Environment. 119:85-119.

- 546. Windeat, A.J. 1987. Effects on the growth of Sorghum bicolour, Helianthus annuus, Phaseolus aureus. Unilever study report BL/B/3078 (R118). Unilever Research Port Sunlight Laboratory, Sunlight, UK.
- 547. Wood, D.C.F. and Bettley, F.R. 1971. The effect of various detergents on human epidermis. Br. J. Derm. 84:320-325.
- 548. World Health Organization. 1996. Linear alkylbenzene sulfonates and related compounds. Environmental Health Criteria 169.
- 549. Wu, Y. and Shen, Y. 1992. Genotoxic effects of linear alkyl benzene sulfonate, sodium pentachlorophenate and dichromate on Tetrahymena pyriformis. J. Protozool. 39:454-456.
- 550. Yakabe, Y., Etoh, C., Matsunobu, Y., Katsuura, H., Miura, K. and Yoshimura, K. 1992. Kinetic study on the biodegradation of linear alkylbenzenesulfonates (LAS) in well-water. Chemosphere. 24:969-977.
- 551. Yamane, A.N., Okada, M. and Sundo, R. 1984. The growth inhibition of planktonic algae due to surfactants used in washing agents. Water Res. 18:1101-1105.
- 552. Yediler, A., Zhang, Y., Cai, J.P. and Korte, F. 1989. Effect of the microbial population size on the degradation of linear alkylbenzene sulfonate in lake water. Chemosphere. 18:1589-1597.
- 553. Yoneyama, M. Fujii, T., Ikawa, M., Shiba, H., Sakamoto, Y., Yano, N., Kobayashi, H., Ichikawa, H. and Hiraga, K. 1972. Studies on the toxicity of synthetic detergents. (II) Subacute toxicity of linear and branched alkyl benzene sulfonates in rats. Ann. Rep. Tokyo Metrap. Res. Lab. Public Health. 24:409-440. (In Japanese). cited in IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 554. Yoneyama, M., and Hiraga, K. 1977. Effects of linear alkylbenzene sulfonate on serum lipids in rats. Ann. Rep. Tokyo Metrop. Res. Lab. Public Health. 28(2):109-111, [in Japanese].
- 555. Yoneyama, M., Ikawa, M., Nakao, T. and Hiraga, K. 1978. Effects of LAS on incorporation of acetate-114C in liver lipids in rats. Ann. Rep. Tokyo Metrop. Res. Lab Public Health. 29(2):55-57, [in Japanese].
- 556. Yoneyama, M., Matuchi, Y., Ikawa, M., Kobayashi, H. and Ichikawa, H. 1976. Subacute toxicity of linear alkylbenzene sulfonate. Ann. Rep. Tokyo Metr. Res. Lab. P.H. 27(2):105-112 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.
- 557. Yoneyama, M., Masubuchi, M., Oishi, S., Takahashi, O., Ikawa, M., Yoshida, S., Oishi, H., Mikuriya, H., Yuzawa, K. and Hiraga, K. 1977. Toxicity of linear alkylbenzene sulfonate by dietary administration for life-span to rats. Ann. Rep. Tokyo Metropo. Res. Lab. Public Health. 28(2):73-84, [in Japanese].
- 558. Yoneyama, M., Masubuchi, M., Oishi, S., Takahashi, O., Ikawa, M., Yoshida, S., Oishi, H., Mikuriya, H., Yuzawa, K. and Hiraga, K. 1977. Subacute toxicity of linear alkylbenzene sulfonate. Ann. Rep. Tokyo Metrop. Res. Lab. Public Health. 28:73-84 (in Japanese); cited in: IPCS (1996); Environmental Health Criteria 169: Linear Alkylbenzene Sulfonates (LAS) and Related Compounds. WHO, Geneva, Switzerland.

- 559. Yoshioka, Y., Ose, Y. and Sato, T. 1986. Correlation of the five test methods to assess chemical toxicity and relation to physical properties. Ecotoxicol. Environ. Safety. 12:15-21.
- Zondlo, M.M. 1993. Final report on the safety assessment of sodium dodecylbenzene-sulfonate/TEAdodecylbenzenesulfonate/sodium decylbenzenesulfonate. Journal of the American College of Toxicology. 12:279-309.